



## GLODAPv2.2020 – the second update of GLODAPv2

Are Olsen<sup>1</sup>, Nico Lange<sup>2</sup>, Robert M. Key<sup>3</sup>, Toste Tanhua<sup>2</sup>, Henry C. Bittig<sup>4</sup>, Alex Kozyr<sup>5</sup>, Marta Alvarez<sup>6</sup>, Kumiko Azetsu-Scott<sup>7</sup>, Susan Becker<sup>8</sup>, Peter J. Brown<sup>9</sup>, Brendan R. Carter<sup>10,11</sup>, Leticia Cotrim da Cunha<sup>12</sup>, Richard A. Feely<sup>11</sup>, Steven van Heuven<sup>13</sup>, Mario Hoppema<sup>14</sup>, Masao Ishii<sup>15</sup>,  
5 Emil Jeansson<sup>16</sup>, Sara Jutterström<sup>17</sup>, Camilla S. Landa<sup>1</sup>, Siv K. Lauvset<sup>16</sup>, Patrick Michaelis<sup>2</sup>,  
Akihiko Murata<sup>18</sup>, Fiz F. Pérez<sup>19</sup>, Benjamin Pfleil<sup>1</sup>, Carsten Schirnick<sup>2</sup>, Reiner Steinfeldt<sup>20</sup>, Toru  
Suzuki<sup>21</sup>, Bronte Tilbrook<sup>22</sup>, Anton Velo<sup>19</sup>, Rik Wanninkhof<sup>23</sup>, Ryan J. Woosley<sup>24</sup>

<sup>1</sup> Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway

<sup>2</sup> GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

10 <sup>3</sup> Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, 08540, USA

<sup>4</sup> Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany

<sup>5</sup> NOAA National Centers for Environmental Information, Silver Spring, MD, USA

<sup>6</sup> Instituto Español de Oceanografía, A Coruña, Spain

<sup>7</sup> Department of Fisheries and Oceans, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada

15 <sup>8</sup> UC San Diego, Scripps Institution of Oceanography, San Diego CA 92093, USA

<sup>9</sup> National Oceanography Centre, Southampton, UK

<sup>10</sup> Joint Institute for the Study of the Atmosphere and Ocean, University Washington, Seattle, Washington, USA

<sup>11</sup> Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, Seattle, Washington, USA

20 <sup>12</sup> Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro (RJ), Brazil

<sup>13</sup> Centre for Isotope Research, Faculty of Science and Engineering, University of Groningen, Groningen, the Netherlands

<sup>14</sup> Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany

<sup>15</sup> Oceanography and Geochemistry Research Department, Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan

25 <sup>16</sup> NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway

<sup>17</sup> IVL Swedish Environmental Research Institute, Gothenburg, Sweden

<sup>18</sup> Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan

<sup>19</sup> Instituto de Investigaciones Marinas, IIM – CSIC, Vigo, Spain

<sup>20</sup> University of Bremen, Institute of Environmental Physics, Bremen, Germany

<sup>21</sup> Marine Information Research Center, Japan Hydrographic Association, Tokyo, Japan

30 <sup>22</sup> CSIRO Oceans and Atmosphere and Antarctic Climate and Ecosystems Co-operative Research Centre, University of Tasmania, Hobart, Australia

<sup>23</sup> Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, USA.

<sup>24</sup> Center for Global Change Science, Massachusetts Institute for Technology, Cambridge, Massachusetts, USA

*Correspondence to:* Are Olsen (are.olsen@uib.no)



40 **Abstract.** The Global Ocean Data Analysis Project (GLODAP) is a synthesis effort providing regular compilations of surface to bottom ocean biogeochemical data, with an emphasis on seawater inorganic carbon chemistry and related variables determined through chemical analysis of water samples. GLODAPv2.2020 is an update of the previous version, GLODAPv2.2019. The major changes are: data from 106 more cruises added, extension of time coverage until 2019, and the inclusion of available discrete fugacity of  $\text{CO}_2$  ( $f\text{CO}_2$ ) values in the merged product files. GLODAPv2.2020 includes 45 measurements from more than 1.2 million water samples from the global oceans collected on 946 cruises. The data for the 12 GLODAP core variables (salinity, oxygen, nitrate, silicate, phosphate, dissolved inorganic carbon, total alkalinity, pH, CFC-11, CFC-12, CFC-113, and  $\text{CCl}_4$ ) have undergone extensive quality control, especially systematic evaluation of bias. The data are available in two formats: (i) as submitted by the data originator but updated to WOCE exchange format and (ii) as a merged data product with adjustments applied to minimize bias. These adjustments were derived by 50 comparing the data from the 106 new cruises with the data from the 840 quality-controlled cruises of the GLODAPv2.2019 data product. They correct for errors related to measurement, calibration, and data handling practices, while taking into account any known or likely time trends or variations in the variables evaluated. The compiled and adjusted data product is believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2 % in nitrate, 2 % in silicate, 2 % in phosphate,  $4 \mu\text{mol kg}^{-1}$  in dissolved inorganic carbon,  $4 \mu\text{mol kg}^{-1}$  in total alkalinity, 0.01–0.02, depending 55 on region, in pH, and 5 % in the halogenated transient tracers. The other variables included in the compilation, such as isotopic tracers and discrete  $f\text{CO}_2$  were not subjected to bias comparison or adjustments.

The original data, their documentation and doi codes are available at the Ocean Carbon Data System of NOAA NCEI ([https://www.nodc.noaa.gov/ocads/oceans/GLODAPv2\\_2020/](https://www.nodc.noaa.gov/ocads/oceans/GLODAPv2_2020/), last access: 20 June 2020). This site also provides access to the merged data product, which is provided as a single global file and as four regional ones – the Arctic, Atlantic, 60 Indian, and Pacific oceans – under <https://doi.org/10.25921/2c8h-sa89> (Olsen et al., 2020). The bias corrected product files also include significant ancillary and approximated data. These were obtained by interpolation of, or calculation from, measured data. This living data update documents the GLODAPv2.2020 methods and provides a broad overview of the secondary quality control procedures and results.

## 1 Introduction

65 The oceans mitigate climate change by absorbing atmospheric  $\text{CO}_2$  corresponding to a significant fraction of anthropogenic  $\text{CO}_2$  emissions (Friedlingstein et al., 2019; Gruber et al., 2019) and most of the excess heat in the Earth System caused by the enhanced greenhouse effect (Cheng et al., 2020; Cheng et al., 2017). The objective of GLODAP (Global Ocean Data Analysis Project, [www.gladap.info](http://www.gladap.info), last access: 25 May 2020) is to ensure provision of high quality and bias-corrected water column bottle data from the ocean surface to bottom that document the state and the evolving 70 changes in physical and chemical ocean properties, e.g., the inventory of the excess  $\text{CO}_2$  in the ocean, natural oceanic carbon, ocean acidification, ventilation rates, oxygen levels, and vertical nutrient transports. The GLODAP core variables, which are quality controlled and bias corrected, are salinity, dissolved oxygen, inorganic macronutrients (nitrate, silicate, and phosphate), seawater  $\text{CO}_2$  chemistry variables (dissolved inorganic carbon –  $\text{TCO}_2$ , total alkalinity –  $\text{TAlk}$ , and pH on the total  $\text{H}^+$  scale), and the halogenated transient tracers CFC-11, CFC-12, CFC-113, and  $\text{CCl}_4$ .  
75 Other chemical tracers are usually also measured on the cruises included in GLODAP. A subset of these data is distributed as part of the product but has not been extensively quality controlled or checked for measurement biases in this effort. For some of these variables, better sources of data may exist, for example the product by Jenkins et al. (2019)



for helium isotope and tritium data. GLODAP also includes derived variables to facilitate interpretation, such as potential density anomalies and apparent oxygen utilization (AOU). A full list of variables included in the product is provided in 80 Table 1.

The oceanographic community largely adheres to principles and practices for ensuring open access to research data, such as the FAIR (Findable, Accessible, Interoperable, Reusable) initiative (Wilkinson et al., 2016), but the plethora of file formats and different levels of documentation combined with the need to retrieve data on a per cruise basis from different access points limits the realization of their full scientific potential. For biogeochemical data there is the added complexity 85 of different levels of standardization and calibration, and even different units used for the same variable, such that the comparability between data sets is often poor. Standard operating procedures have been developed for some variables (Dickson et al., 2007; Hood et al., 2010; Hydes et al., 2012) and certified reference materials (CRM) exist for seawater TCO<sub>2</sub> and TALK measurements (Dickson et al., 2003) and for nutrients in seawater (CRMNS; Aoyama et al., 2012; Ota et al., 2010). Still biases in data occur. These can arise from poor sampling and general operation practices, calibration 90 procedures, instrument design, and inaccurate calculations. The use of CRMs does not by itself ensure accurate measurements of seawater CO<sub>2</sub> chemistry (Bockmon and Dickson, 2015), and the CRMNS have only become available recently and are not universally used. For salinity and oxygen, lack of – or improper – conductivity-temperature-depth (CTD) sensor calibration is an additional and widespread problem (Olsen et al., 2016). For halogenated transient tracers, 95 uncertainties in the standard gas composition, extracted water volume, and purge efficiency typically provide the largest sources of uncertainty. In addition to bias, occasional outliers occur. In rare cases poor precision can render a set of data unusable. GLODAP deals with these issues by presenting the data in a uniform format, by including any documentation that was either submitted by the data originator or could be attained, and by subjecting the data to primary and secondary quality control assessments, focusing on precision and consistency, respectively. Adjustments are applied on the data to minimize severe cases of bias.

100 GLODAPv2.2020 builds on earlier synthesis efforts for biogeochemical data obtained from research cruises, GLODAPv1.1 (Key et al., 2004; Sabine et al., 2005), Carbon dioxide in the Atlantic Ocean (CARINA) (Key et al., 2010), Pacific Ocean Interior Carbon (PACIFICA) (Suzuki et al., 2013), and notably GLODAPv2 (Olsen et al., 2016). GLODAPv1.1 combined data from 115 cruises with biogeochemical measurements from the global ocean. The vast 105 majority of these were the sections covered during the World Ocean Circulation Experiment and the Joint Global Ocean Flux Study (WOCE/JGOFS) in the 1990s, but also included data from important “historical” cruises, such as from the Geochemical Ocean Sections Study (GEOSECS), Transient Traces in the Ocean (TTO), and South Atlantic Ventilation Experiment (SAVE). GLODAPv2 was released in 2016 with data from 724 scientific cruises, including those from GLODAPv1.1, CARINA, PACIFICA, and data from 168 additional cruises. A particular important source of data were the 110 cruises executed within the framework of the “repeat hydrography” program (Talley et al., 2016), instigated in the early 2000s as part of CLIVAR and since 2007 organized as the Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP) (Sloyan et al., 2019). GLODAPv2 is now updated regularly using the format of “living data format” of *Earth System Science Data* to document significant additions and changes to the dataset. This is the second regular update and adds data from 106 new cruises to the last update GLODAPv2.2019 (Olsen et al., 2019).

## 2 Key features of the update

115 GLODAPv2.2020 (Olsen et al., 2020) contains data from 946 cruises, covering the global ocean from 1972 to 2019, compared to 840 for the period 1972-2017 for GLODAPv2.2019. Information on the 106 cruises added to this version is



provided in Table A1 in the Appendix. Their sampling locations are shown alongside those of GLODAPv2.2019 in Fig. 1, while the coverage in time is shown in Fig. 2. The added cruises are from the years 2004–2019 with most more recent than 2010. The majority of the new data were obtained from the two vessels *RV Keifu Maru II* and *RV Ryofu Maru III*, which are operated by the Japan Meteorological Agency in the western North Pacific (Oka et al., 2018; Oka et al., 2017). The data collected across the Davis Strait from 10 cruises between 2004–2015 through a collaboration between the Bedford Institute of Oceanography, Canada and the University of Washington, USA (Azetsu-Scott et al., 2012) is another important addition. Other cruises from the Atlantic include those carried out on the *RV Maria S. Merian* and *RV Meteor*, with transient tracer but not nutrients or seawater CO<sub>2</sub> chemistry data; the 2016 occupation of the OVIDE line (Pérez et al., 2018); the 2019 occupation of A17 onboard *RV Hesperides*; the 2018 occupation of A9.5 onboard RSS *James Cook* (King et al., 2019); and A02 on the *RV Celtic Explorer* in 2017 (McGrath et al., 2019). Two older North Atlantic cruises that did not find their way into GLODAPv2 have been added, a 2008 occupation of AR07W including more extensive subpolar NA sampling (35TH20080825) and a 2007 *RV Pelagia* cruise (64PE20071026) covering the Northeast Atlantic. The final Atlantic cruise is 29GD20120910 onboard *RV Garcia del Cid*, which has measurements for stable isotopes of carbon and oxygen ( $\delta^{13}\text{C}$  and  $\delta^{18}\text{O}$ ) off the Iberian Peninsula (Voelker et al., 2015) but no data for nutrients, seawater CO<sub>2</sub> chemistry, or transient tracers. Two new cruises are included for the Indian Ocean, both in the far south, in the Indian sector of the Southern Ocean: an Argo deployment cruise south and west of Kerguelen Island onboard the *RV S. A. Agulhas I*, and the 2018 occupation of GO-SHIP line SR03 onboard the *RV Investigator*. The JOIS cruise in 2015 is the sole addition for the Arctic. Finally, the data along the US west coast are from two cruises conducted on board the RVs *Wecoma* (WCOA2011, 32WC20110812) and *Ronald H. Brown* (WCOA2016, 33RO20160505) as part of NOAA's ocean acidification program.

All new cruises were subjected to primary (Sect. 3.1) and secondary (Sect. 3.2) quality control (QC). These procedures are essentially the same as previously, aiming to ensure the consistency of the data from the 106 new cruises to the previous release of this data product (the GLODAPv2.2019 adjusted data product). A full-blown consistency analysis of the entire GLODAPv2.2020 product (as done with the original GLODAPv2 product) has not been carried out, as it is too demanding in terms of time and resources to allow for frequent updates, particularly in terms of application of inversion results. The QC of GLODAPv2.2019 produced a sufficiently accurate data product that can serve as a reliable reference (this is in fact already done by some investigators to test their newly collected data; e.g. Panassa et al. 2018). The aim is to conduct a full analysis (i.e., including an inversion) again after the completion of the third GO-SHIP survey, currently scheduled for completion by 2023. Until that time, intermediate products like this are released regularly (every one or two years). A naming convention has been introduced to distinguish intermediate from full product updates. For the latter the version number will change, while for the former the year of release is added.

### 3 Methods

#### 3.1 Data assembly and primary quality control

The data for the 106 new cruises were retrieved from data centers (typically CCHDO, NCEI, PANGAEA) or submitted directly to us. Each cruise is identified by an EXPOCODE. The EXPOCODE is guaranteed to be unique and constructed by combining the country code and platform code with the date of departure in the format YYYYMMDD. The country and platform codes were taken from the ICES (International Council for the Exploration of the Sea) library (<https://vocab.ices.dk/>, last access: 20 June 2020).



155 The individual cruise data files were converted to WOCE exchange format: a comma delimited ASCII format for CTD and bottle data from hydrographic cruises. GLODAP deals only with bottle data and CTD data at bottle trip depths, and their exchange format is briefly reviewed here with full details provided in Swift and Diggs (2008). The first line of each exchange file specifies the data type, in the case of GLODAP this is “BOTTLE”, followed by a date and time stamp and identification of the person/group who prepared the file, e.g., “PRINUNIVRMK” is Princeton University, Robert M. Key.

160 Next follows the README section. This provides brief cruise specific information, such as dates, ship, region, method and quality notes for each variable measured, citation information, and references to any papers that used or presented the data. The README information was typically assembled from the information contained in the metadata submitted by the data originator. In some cases, issues noted during the primary QC and other information such as file update notes are included. The only rule for the README section is that it be concise and informative. The README is followed by data

165 column headers, units, and then the data. The headers and units are standardized and provided in Table 1 for the variables included. Exchange file preparation entailed units conversion in some cases, most frequently from milliliters per liter (mL L<sup>-1</sup>; oxygen) or micromoles per liter (μmol L<sup>-1</sup>; nutrients) to micromoles per kilogram of seawater (μmol kg<sup>-1</sup>). The default procedure for nutrients was to use seawater density at reported salinity, an assumed measurement-temperature of 22 °C, and pressure of 1 atm. For oxygen, the factor 44.66 was used for the milliliter to micromole conversion, while for

170 the per liter to per kilogram conversion density based on reported salinity and draw temperatures was preferred, but draw temperature was frequently not reported and potential density was used instead. The potential errors introduced by any of these procedures are insignificant. Missing numbers are indicated by -999, with trailing zeros to comply with the number format for the variable in question, as specified in Swift and Diggs (2008).

175 Each data column (except temperature and pressure, which are assumed “good” if they exist) has an associated column of data flags. For the exchange files, these flags conform to the WOCE definitions for water sample bottles and are listed in Table 2. If no such WOCE flags were submitted with the data, they were assigned by us. In any case, incoming files were subjected to primary QC to detect questionable or bad data. This was carried out following Sabine et al. (2005) and Tanhua et al. (2010), primarily by inspecting property-property plots. Outliers showing up in two or more different such plots were generally defined as questionable and flagged as such. In some cases, outliers were detected during the

180 secondary QC; the consequential flag changes have then also been applied in the original cruise data files.

### 3.2 Secondary quality control

185 The aim of the secondary QC was to identify and correct any significant biases in the data from the 106 new cruises relative to GLODAPv2.2019, while retaining any signal due to temporal changes. To this end, secondary QC in the form of consistency analyses was conducted to identify offsets in the data. All identified offsets were scrutinized by the GLODAP reference group through a series of teleconferences during March and April 2020 in order to decide the adjustments to be applied to correct for the offset (if any). To guide this process, a set of initial minimum adjustment limits was used (Table 3). These are set according to the expected measurement precision for each variable, and are the same as those used for GLODAPv2.2019. In addition to the magnitude of the offset, factors such as its precision, persistence towards the various cruises used in the comparison, regional dynamics, and the occurrence of time trends or other variations were considered. Thus, not all offsets larger than the initial minimum limits have been adjusted for. A guiding principle for these considerations was to not apply an adjustment whenever in doubt. Conversely, in some cases where data and offsets were very precise and the cruise had been conducted in a region where variability is expected to be small, adjustments lower than the minimum limits were applied. Any adjustment was applied uniformly to all values for a



variable and cruise, i.e., an underlying assumption is that cruises suffer from either no or a single and constant  
195 measurement bias. Except where explicitly noted (Sect. 3.3.1), adjustments were not changed for data previously included  
in GLODAPv2.2019.

Crossover comparisons, multi-linear regressions (MLRs), and comparison of deep-water averages were used to identify  
offsets for salinity, oxygen, nutrients, TCO<sub>2</sub>, TALK and pH (Sect. 3.2.2 and 3.2.3). In contrast to GLODAPv2 and  
200 GLODAPv2.2019, evaluation of the internal consistency of the seawater CO<sub>2</sub> chemistry variables was not used for the  
evaluation of pH (Sect. 3.2.4). New to the present version is the more extensive use of CANYON-B and CONTENT  
predictions for the evaluation of offsets in nutrients and seawater CO<sub>2</sub> chemistry data (Section 3.2.5). For the halogenated  
transient tracers, examination of surface saturation levels and the relationship among the tracers were used to assess the  
data consistency (Sect. 3.2.6). For salinity and oxygen, CTD and bottle values were merged into a “hybrid” variable prior  
to the consistency analyses (Sect. 3.2.1).

### 205 3.2.1 Merging of sensor and bottle data

Salinity and oxygen data can be obtained either by analysis of water samples (bottle data) and/or directly from the CTD  
sensor pack. These two types are merged and presented as a single variable in the product. The merging was conducted  
prior to the consistency checks, ensuring their internal calibration in the product. The merging procedures were only  
210 applied to the bottle data files, which commonly include values recorded by the CTD at the pressures of the upcast when  
the water samples are collected. Whenever both CTD and bottle data were present in a data file, the merging step  
considered the deviation between the two and calibrated the CTD values if required and possible. Altogether seven  
scenarios are possible, where the fourth (see below) never occurred during our analyses, but is included to maintain  
consistency with GLODAPv2:

- 215 1. No data are available: no action needed.
2. No bottle values: use CTD values.
3. No CTD values: use bottle values.
4. Too few data of both types for comparison and more than 80 % of the records have bottle values: use bottle values.
5. The CTD values do not deviate significantly from bottle values: replace missing bottle values with CTD values.
6. The CTD values deviate significantly from bottle values: calibrate CTD values using linear fit with respect to bottle  
220 data and replace missing bottle values with the so-calibrated CTD values.
7. The CTD values deviate significantly from bottle values, and no good linear fit can be obtained for the cruise: use  
bottle values and discard CTD values.

The number of cases encountered for each scenario is summarized in Sect. 4.1.

### 3.2.2 Crossover analyses

225 The crossover analyses were conducted with the MATLAB toolbox prepared by Lauvset and Tanhua (2015) and with the  
GLODAPv2.2019 data product as reference. In areas where a strong trend in salinity was present, the TALK and TCO<sub>2</sub>  
data were salinity normalized before crossover analysis, following Friis et al. (2003).

The toolbox implements the ‘running-cluster’ crossover analysis first described by Tanhua et al. (2010). This analysis  
230 compares data from two cruises on a station-by-station basis and calculates a weighted mean offset between the two and  
its weighted standard deviation. The weighting is based on the scatter in the data such that data that have less scatter have  
larger influence on the comparison than data with more scatter. Whether the scatter reflects actual variability or data



precision is irrelevant in this context as increased scatter regardless decreases the confidence in the comparison. Stations that are compared must be within  $2^{\circ}$  arc distance ( $\sim 200$  km) of each other, and only deep data are used. This minimizes effects of natural variability. As default, we used 1500 dbar as the upper depth limit, but in regions where deep mixing or 235 convection occurs (such as the Nordic, Labrador, and Irminger seas) a more conservative limit of 2000 dbar was applied.

The deeper limit was also applied to the majority of the northern Pacific cruises on the RV *Keifu Maru II* and RV *Ryofu Maru III* due to the great abundance of deep data of the new- and reference cruises. As an example, the crossover for  $\text{TCO}_2$  measured on the two cruises 49UP20160109 and 49UP20160703 is shown in Fig. 3. For  $\text{TCO}_2$  the offset is determined as the difference. This is also the case for salinity, TALK, and pH. For the nutrients, oxygen, and the halogenated transient 240 tracers, ratios are used. This in accordance with the procedures followed for GLODAPv2. The  $\text{TCO}_2$  values from 49UP20160109 are higher, with a weighed mean offset of  $3.62 \pm 2.67 \mu\text{mol kg}^{-1}$  compared to those measured at 49UP20160703.

For each of the 106 new cruises, such a crossover comparison was conducted against all cruises possible in GLODAPv2.2019, i.e., all cruises that had stations closer than  $2^{\circ}$  arc distance to any station for the cruise in question. 245

The summary figure for  $\text{TCO}_2$  at 49UP20160109 is shown in Fig. 4. The  $\text{TCO}_2$  data measured at this cruise are high when compared to the data measured at all nearby cruises included in GLODAPv2.2019, by  $3.68 \pm 0.83 \mu\text{mol kg}^{-1}$ . This is slightly less than the initial minimum adjustment limit for  $\text{TCO}_2$  of  $4 \mu\text{mol kg}^{-1}$  (Table 3), but the offset is present against all cruises and there is no obvious time trend (particularly important for  $\text{TCO}_2$ ), and as such qualifies for an adjustment of the data in the merged data product. In this case  $-3 \mu\text{mol kg}^{-1}$  was applied, in order to bring the  $\text{TCO}_2$  data from 250 49UP20160109 into consistency with GLODAPv2.2019.

Two exceptions to the above-described procedure exist: In the Japanese Sea six new cruises were added. In this region, there are only data from two cruises in GLODAPv2.2019. Therefore, all eight cruises were compared against each other and strong outliers were adjusted accordingly, instead of adjusting the six new cruises towards the two existing. A similar 255 approach was used for the 10 new Davis Strait cruises; in this region no data were available in GLODAPv2.2019. Due to the complex hydrography and differences in sampling locations it was very problematic to fully quality control these data, however, so most have been labeled -888, i.e., they are included in the product but with a secondary QC flag of 0 (Sect. 6).

### 3.2.3 Other consistency analyses

A few new cruises had no or very few valid crossovers with GLODAPv2 data. In that situation two other consistency 260 analyses were carried out for salinity, oxygen, nutrients,  $\text{TCO}_2$ , and TALK data, namely MLR analyses and deep water averages, broadly following Jutterström et al. (2010). For the MLRs, the presence of bias in the data for the cruise in question was identified by comparing the MLR generated with the measured values. These methods were useful in the data-sparse Arctic and Southern oceans. Both analyses were conducted on samples collected deeper than the 1500 or 2000 dbar pressure level to minimize the effects of natural variations, and both used available GLODAPv2.2019 data 265 from within  $2^{\circ}$  of the cruise in question to generate the MLR or deep water average. The lower depth limit was set to the deepest sample for the cruise in question. For the MLRs, all of the above mentioned variables could be included among the independent variables (e.g., for a TALK MLR, salinity, oxygen, nutrients, and  $\text{TCO}_2$  were allowed), with the exact selection determined based on the statistical robustness of the fit, as evaluated using the coefficient of determination ( $r^2$ ) and root mean square error (RMSE). MLRs based on variables that were suspect for the cruise in question were avoided 270 (e.g., if oxygen appeared biased it was not included as an independent variable). The MLRs could be based on 10 to 500



samples, and the robustness of the fit ( $r^2$ , RMSE) and quantity of fitting data were considered when using the results to guide whether to apply a correction. The same applies for the deep-water averages (i.e., the standard deviation of the mean). MLR and deep-water average results showing offsets above the minimum adjustment limits were carefully scrutinized, along with any crossover and CANYON-B and CONTENT results that existed, to determine whether or not 275 to apply an adjustment.

### 3.2.4 pH scale conversion and quality control

Altogether 82 of the 106 new cruises included pH data. For one of these, the pH data were not supplied on the total scale or at 25 °C and 0 dbar pressure, which is the GLODAP standard, and were thus converted. The conversion was conducted using CO2SYS (Lewis and Wallace, 1998) for MATLAB (van Heuven et al., 2011) with reported pH and TAalk as inputs, 280 and generating pH output values at total scale at 25 °C and 0 dbar of pressure (named phts25p0 in the product). Missing TAalk data were approximated as 67 times salinity. The proportionality (67) is the mean ratio of TAalk to salinity in GLODAPv2 data. This is sufficiently accurate for scale-temperature-pressure conversions. Data for phosphate and silicate are also needed, and were, whenever missing, determined using CANYON-B (Bittig et al., 2018). The conversion was conducted with the carbonate dissociation constants of Lueker et al. (2000), the bisulfate dissociation constant of Dickson 285 (1990), and the borate-to-salinity ratio of Uppström (1974). These procedures are the same as used for GLODAPv2.2019 (Olsen et al., 2019)

Internal consistency of CO<sub>2</sub> system variables were not used for the secondary quality control of the pH data of the 106 new cruises, but only crossover analysis supplemented by CONTENT and CANYON-B (Sect. 3.2.5). This avoids 290 uncertainties in the quality control owing to incomplete understanding of the thermodynamic constants, major ion concentrations, measurement biases, and potential contribution of organic compounds to alkalinity (Álvarez et al., 2020; Takeshita et al., 2020). However, this applies only to the new cruises. The pH data of 840 of the 936 cruises in GLODAPv2.2020 were QC'd for GLODAPv2 and GLODAPv2.2019, and for these earlier products internal consistency of CO<sub>2</sub> system was used for secondary QC of pH. Therefore the level of consistency between these 936 cruises remains at 0.01 to 0.02 pH units, as more thoroughly discussed in Olsen et al. (2019)

### 295 3.2.5 CANYON-B and CONTENT analyses

CANYON-B and CONTENT (Bittig et al., 2018) were used to support decisions regarding application of adjustments (or not) from the analyses described above. CANYON-B is a neural network for estimating nutrients and seawater CO<sub>2</sub> chemistry variables from temperature, salinity, and oxygen. CONTENT additionally considers the consistency among the estimated CO<sub>2</sub> chemistry variables to further refine them. These approaches were developed using the data included in the 300 GLODAPv2 data product. Their advantage compared to crossover analyses for evaluating consistency among cruise data is, that effects of water mass changes on ocean properties are represented in the non-linear relationships in the underlying neural network. For example, if elevated nutrient values are measured on a cruise but are not due to a measurement bias but actual aging of the water mass(es) that have been sampled and as such accompanied by a decrease in oxygen concentrations, the measured values and the CANYON-B estimates will be similar. Vice-versa, if the nutrient values are 305 biased, the measured values and CANYON-B predictions will be dissimilar. Of course, we kept in mind that this relies on the accuracies of the T, S and O<sub>2</sub> data and of CANYON-B and CONTENT in themselves. Used in the correct way and with caution this tool is a powerful supplement to the traditional crossover analyses. As an example, the CANYON-B/CONTENT analyses of the data obtained at 49UP20160109 are presented in Fig. 5. The CANYON-B and CONTENT



results confirmed the positive offset in the TCO<sub>2</sub> values revealed in the crossover comparisons discussed in Sect. 3.2.2.  
310 The magnitude of the inconsistencies for the CANYON-B estimate was 3.4 µmol kg<sup>-1</sup>, i.e., slightly less than that the weighted mean crossover offset of 3.7 µmol kg<sup>-1</sup>, while the CONTENT estimate gave an inconsistency of 2.7 µmol kg<sup>-1</sup>. The differences between these consistency estimates owes to differences in the actual approach, the weighting across stations, stations considered (i.e., crossover comparisons use only stations within ~200 km of each other, while CANYON-B and CONTENT considers all stations where necessary variables are sampled, and depth range considered (> 315 500 dbar for CANYON-B and CONTENT vs. >1500/2000 dbar for crossovers). The specific difference between the CANYON-B and CONTENT estimates is a result of the seawater CO<sub>2</sub> chemistry considerations by the latter. For the other variables, the inconsistencies are low and agree with the crossover results (not shown here but results can be accessed through the Adjustment Table) with the exception of pH. The pH results are further discussed in Sect. 4.2. Another advantage of CANYON-B and CONTENT is that by considering the each data point in it self, primary QC issues 320 has been revealed and corrected for some of the cruises.

### 3.2.6 Halogenated transient tracers

For the halogenated transient tracers (CFC-11, CFC-12, CFC-113, and CCl<sub>4</sub>; CFCs for short) inspection of surface saturation levels and evaluation of relationships between the tracers for each cruise were used to identify biases, rather than crossover analyses. Crossover analysis is of limited value for these variables given their transient nature and low 325 deep-water concentrations. As for GLODAPv2, the procedures were the same as those applied for CARINA (Jeansson et al., 2010; Steinfeldt et al., 2010).

### 3.3 Merged product generation

The merged product file for GLODAPv2.2020 was created by correcting known issues in the GLODAPv2.2019 merged file, and then appending a merged and bias-corrected file containing the 106 new cruises to this error-corrected 330 GLODAPv2.2019 file.

#### 3.3.1 Updates and corrections for GLODAPv2.2019

Several minor omissions and errors have been identified in the GLODAPv2 and v2.2019 data products since their release in 2016 and 2019, respectively. Most of these have been corrected in this release. In addition, some recently available data have been added for a few cruises. The changes are:

335 – For cruise 33RR20160208, the CFC-113 data of station 31 were found to be bad and have been removed. Additionally, the flags for CFC-11, CFC-12, SF<sub>6</sub> and CCl<sub>4</sub> were replaced with new ones received from the Principal Investigator, and recently published data for δ<sup>13</sup>C and Δ<sup>14</sup>C have been added to the product file.

– For 18HU20150504, the pH data measured at stations 196, 200, and 203 were found offset by approximately +0.1 units, because such large offset points to general data quality problems, these data have been removed.

340 – For 32PO20130829, pH values of station 133 cast 1 were in the wrong order in the file. This has been amended. Additionally, pH values from cast 2 at this station were deemed questionable and have been removed.

– For 33RR20050109, the δ<sup>13</sup>C values of station 7 bottle 32 and station 16 bottle 22 were found bad (values were less than -6 ‰) and have been removed from the product file.

– For 35MF19850224, the δ<sup>13</sup>C value of station 21 cast 3 bottle 4 was found bad and has been removed.

345 – For 74JC20100319 the δ<sup>13</sup>C value at station 37 bottle 7 was found bad and has been removed.



- All  $\delta^{13}\text{C}$  values from the large volume Gerard barrels (identified by bottle number greater than 80) were removed from the product files as these often have poor precision and accuracy related to gas extraction procedures.
- For 33HQ20150809, temperatures of station 52 cast 1 were found bad (less than -2 °C) and have been removed, hence all other samples were removed for this cast as well (the same depths and variables were sampled at the other casts, however). Temperatures for casts 2 and 8 were replaced with updated values; these changes are very minor, on the order of 0.001 °C.
- For cruises 33RO20110926, 33RO20150525, and 33RO20150410,  $\delta^{13}\text{C}$  and  $\Delta^{14}\text{C}$  data have become available and added to the product.
- Ship code for all RV *Maria S. Merian* cruises have been changed from MM to M2.
- For cruises 49SH20081021 and 49UF20121024, an adjustment of + 6  $\mu\text{mol kg}^{-1}$  is now applied to the  $\text{TCO}_2$  values.
- Additional primary QC have been applied to the cruises with *Keifu Maru II* and *Ryofu Maru III* that were included in GLODAPv2.2019.
- Discrete fugacity of  $\text{CO}_2$  ( $f\text{CO}_2$ ) data are now included in the product files whenever available. Discrete  $f\text{CO}_2$  is one of the four variables that describes seawater  $\text{CO}_2$  chemistry, but is rarely measured and has not been included in GLODAP product files before, in particular as a result of apparent quality issues that were not fully understood during the secondary QC for GLODAPv1.1 (Sabine et al., 2005). However, for some cruises  $f\text{CO}_2$  data were included indirectly in both GLODAPv1.1 and GLODAPv2 as they had been used to calculate TAlk, in combination with  $\text{TCO}_2$ . These calculated TAlk values were, however, not included in v2.2019. We have now chosen to include the discrete  $f\text{CO}_2$  values in the product files. This increases transparency and traceability of the product; the  $f\text{CO}_2$  data are also highly relevant for ongoing efforts toward resolving recently identified inconsistencies in our understanding of the relationships among the four seawater  $\text{CO}_2$  chemistry variables (Carter et al., 2018; Fong and Dickson, 2019; Takeshita et al., 2020; Álvarez et al., 2020). A total of 33924 discrete  $f\text{CO}_2$  measurements from 34 cruises conducted between 1983-2014 are now included. All values were converted to 20 °C and 0 dbar pressure using CO2SYS for MATLAB (van Heuven et al., 2011). This was also used for the conversion of partial pressure of  $\text{CO}_2$  ( $p\text{CO}_2$ ) to  $f\text{CO}_2$  for the 20 cruises where  $p\text{CO}_2$  was reported. The procedures for these conversions, in terms of dissociation constants and approximation of missing variables, were the same as for the pH conversions (Sect. 3.2.4). These  $f\text{CO}_2$  data have not been subjected to secondary QC. The inclusion of discrete  $f\text{CO}_2$  data has led to some changes in the calculations of missing seawater  $\text{CO}_2$  chemistry variables; these are described towards the end of the next section.

### 3.3.2 Merging

The new data were merged into a bias-minimized product file following the procedures used for GLODAPv1.1 (Key et al., 2004; Sabine et al., 2005), CARINA (Key et al., 2010), PACIFICA (Suzuki et al., 2013), GLODAPv2 (Olsen et al., 2016), and GLODAPv2.2019 (Olsen et al., 2019), with some modifications:

- Data from the 106 new cruises were merged and sorted according to EXPOCODE, station, and pressure. GLODAP cruise numbers were assigned consecutively, starting from 2001, so they can be distinguished from the GLODAPv2.2019 cruises that ended at 1116.



385

390

400

410

415

420

- For some cruises the combined concentration of nitrate and nitrite was reported instead of nitrate. If explicit nitrite concentrations were also given, these were subtracted to get the nitrate values. If not, the combined concentration was renamed to nitrate. As nitrite concentrations are very low in the open ocean, this has no practical implications.
- When bottom depths were not given, they were approximated as the deepest sample pressure +10 dbar or extracted from ETOPO1 (Amante and Eakins, 2009), whichever was greater. For GLODAPv2, bottom depths were extracted from the Terrain Base (National Geophysical Data Center/NESDIS/NOAA/U.S. Department of Commerce, 1995). The intended use of this variable is only drawing approximate bottom topography for sections.
- Whenever temperature was missing in the original data file, all data for that record were removed and their flags set to 9. The same was done when both pressure and depth were missing. For all surface samples collected using buckets or similar, the bottle number was set to zero. There are some exceptions to this, in particular for cruises that also used Gerard barrels for sampling. These may have valuable tracer data not accompanied by a temperature, so such data have been retained.
- All data with WOCE quality flags 3, 4, 5, or 8 were excluded from the product files and their flags set to 9. Hence, in the product files a flag 9 can indicate not measured (as is also the case for the original exchange formatted data files) or excluded from the product; in any case, no data value appears. All flags 6 (replicate measurement) and 7 (manual chromatographic peak measurement) were set to 2.
- Missing sampling pressures or depths were calculated following UNESCO (1981).
- For both oxygen and salinity, CTD and bottle values were merged following procedures summarized in Sect. 3.2.1.
- Missing salinity, oxygen, nitrate, silicate, and phosphate values were vertically interpolated whenever practical, using a quasi-Hermetian piecewise polynomial. “Whenever practical” means that interpolation was limited to the vertical data separation distances given in Table 4 in Key et al. (2010). Interpolated values have been assigned a WOCE quality flag 0.
- The data for the 12 core variables were corrected for bias using the adjustments determined during the secondary QC. For each of these variables the data product also has separate columns of secondary QC flags, indicating by cruise and variable whether (“1”) or not (“0”) data successfully received secondary QC. A 0 flag here means that data were too shallow or geographically too isolated for consistency analyses or that these analyses were inconclusive, but that we have no reasons to believe that the data in question are of poor quality.
- Values for potential temperature and potential density anomalies (referenced to 0, 1000, 2000, 3000, and 4000 dbar) were calculated using Fofonoff (1977) and Bryden (1973). Neutral density was calculated using Sérazin (2011). Apparent oxygen utilization was determined using the combined fit in Garcia and Gordon (1992).
- Partial pressures for CFC-11, CFC-12, CFC-113, CCl<sub>4</sub>, and SF<sub>6</sub> were calculated using the solubilities by Warner and Weiss (1985), Bu and Warner (1995), Bullister and Wisegarver (1998), and Bullister et al. (2002).
- Missing seawater CO<sub>2</sub> chemistry variables were calculated, whenever possible. The procedures for these calculations have been slightly altered as the product now contains four such variables; earlier versions of GLODAPv2 (Olsen et al., 2016; Olsen et al., 2019) included only three, so whenever two were included the one to calculate was unequivocal. Four CO<sub>2</sub> chemistry variables gives more degrees of freedom in this respect, e.g., a particular record may have measured data for TCO<sub>2</sub>, TALK, and pH, and then a choice needs to be made with regard to which pair to use for the calculation of  $\text{fCO}_2$ . We followed two simple principles. First, TCO<sub>2</sub> and TALK was the preferred pair to calculate pH and  $\text{fCO}_2$ , because we have higher confidence in the TCO<sub>2</sub> and TALK data



425

430

than pH (given the issues summarized in Sect. 3.2.4) and  $f\text{CO}_2$  (because it was not subjected to secondary QC). Second, if either  $\text{TCO}_2$  or  $\text{TAlk}$  was missing and both pH and  $f\text{CO}_2$  data existed, pH was preferred (because  $f\text{CO}_2$  has not been subjected to secondary QC). All other options involve only two measured variables. The calculations were conducted using CO2SYS (Lewis and Wallace, 1998) for MATLAB (van Heuven et al., 2011), with the constants set as for the pH conversions (Sect. 3.2.4). For calculations involving  $\text{TCO}_2$ ,  $\text{TAlk}$ , and pH, if the number of measured values for a specific cruise were less than half the number of calculated, then all measured values were replaced by calculated values. Such replacements were not done for calculations involving  $f\text{CO}_2$ , as this would tend to overwrite all measured  $f\text{CO}_2$  values or would entail replacing a measured variable that has been subjected to secondary QC (i.e.,  $\text{TCO}_2$ ,  $\text{TAlk}$ , or pH) with one calculated from a variable that has not been subjected to secondary QC (i.e.,  $f\text{CO}_2$ ). Calculated values have been assigned WOCE flag 0.

- The resulting merged file for the 106 new cruises was appended to the merged product file for GLODAPv2.2019.

#### 4 Secondary quality control results and adjustments

435

All material produced during the secondary QC is available at the online GLODAP Adjustment Table hosted by GEOMAR, Kiel, Germany at <https://glodapv2-2020.geomar.de/> (last access: 18 June 2020), and which can also be accessed through [www.glodap.info](http://www.glodap.info). This is similar in form and function to the GLODAPv2 Adjustment Table (Olsen et al., 2016) and includes a brief written justification for any adjustments applied.

##### 4.1 Sensor and bottle data merge for salinity and oxygen

440

445

Table 4 summarizes the actions taken for the merging of the CTD and bottle data for salinity and oxygen. For 81 % of the 106 cruises added with this update, both CTD and bottle data were included for salinity in the original cruise data files and for all these cruises the two data types were found to be consistent. This is similar to the GLODAPv2.2019 results. For oxygen, only 25 % of the cruises included both CTD  $\text{O}_2$  and bottle values; this is much less than for GLODAPv2.2019 where 50 % of the cruises included both. Having both CTD and bottle values in the data files is highly preferred as the information is valuable for quality control (bottle mistrips, leaking niskin bottles, and oxygen sensor drift are among the issues that can be revealed). The extent to which the bottle data (i.e., OXYGEN in the individual cruise exchange files) in reality is mislabeled CTD data (i.e., should be CTDOXY) is uncertain. Regardless, the large majority of the CTD and bottle oxygen were consistent and did not need any further calibration of the CTD values (23 out of 25 cruises), while for two cruises no good fit could be obtained and their CTD  $\text{O}_2$  data are not included in the product.

450

##### 4.2 Adjustment summary

The secondary QC actions for the 12 core variables and distribution of adjustments applied are summarized in Table 5 and Fig. 6, respectively. A very small fraction of the data is adjusted for most variables. None of the salinity data are adjusted, for oxygen and nitrate 1% of the data are adjusted, 2 % for  $\text{TCO}_2$ , 5 % for  $\text{TAlk}$ , 7 % for phosphate, and 9 % for silicate. For the CFCs, data from one of 16 cruises with CFC-11 is adjusted, while the fractions are two of 21 for CFC-12, and one out of three for CFC-113. The adjustments for the variables are also fairly small, overall. Thus the tendency observed during the production of GLODAPv2.2019 remains, namely, that the data collected at the large majority of recent cruises are consistent with earlier releases of this product.



The quality control of pH data proved challenging for this version. The large majority had been collected in the northwestern Pacific, at the cruises conducted by the Japan Meteorological Agency. Figure 7 shows the distribution of pH 460 crossover offsets vs. GLODAPv2.2019. Most of the pH values are higher, some by up to 0.02 units, which is considerable, particularly as the data that are compared are from deeper than 2000 dbar where no changes due to ocean acidification are expected. The challenging aspect lies in the fact that the data that are being added are comparatively many (~ 70 cruises vs. ~ 130 already included in v2.2019) and also are more recent (2010–2018 vs. 1993–2016). As such 465 they might be of higher quality given advances in pH measurement techniques over the years. Adjusting a large fraction of the new cruises down (by the adjustment limit of 0.01) is not advisable. We therefore chose to not adjust any pH data, but to exclude the most serious outliers from the product file (using a limit of  $|0.015|$ ) and include the rest of the data as is. This is the reason that the number of adjusted cruises for pH is zero (Table 5). We expect that a crossover and inversion 470 analysis of all pH data in the northwestern Pacific will provide more information on the consistency among the cruises, and such an analysis will be conducted for the next update. This might result in re-inclusion of these data, the formal decision for these are therefore “suspend” (Table 5). For now, some caution should be exercised if looking at trends in ocean pH in that region using these data.

For the nutrients, the adjustments were applied to maintain consistency with data included in GLODAPv2 and GLODAPv2.2019. An alternative goal for the adjustments would be maintaining consistency with data from cruises that 475 employed CRMNS to ensure accuracy of nutrient analyses. Such a strategy was adopted by Aoyama (2020) for preparation of the Global Nutrients Dataset 2013 (GND13), and is being considered for GLODAP as well. However, as it would require a re-evaluation of the entire data set, this will not occur until the next full update of GLODAP, i.e., GLODAPv3. For now, we note the overall agreement between the adjustments applied in these two efforts (Aoyama, 2020), and that most disagreements appear to be related to cases where no adjustments were applied in GLODAP. This 480 can be related to the strategy followed for nutrients for GLODAPv2, where data from GO-SHIP lines were considered a priori more accurate than other data. CRMNS are used for nutrients on most GO-SHIP lines.

The improvement in data consistency is evaluated by comparing the weighted mean of the absolute offsets for all 485 crossovers before and after the adjustments have been applied. This “consistency improvement” for core variables is presented in Table 6. The data for CFCs were omitted for previously discussed reasons (Sect. 3.2.6). Globally, the improvement is modest. Considering the initial data quality, this result was expected, but this does not imply that the data initially were consistent everywhere. Rather, for some regions and variables there are substantial improvements when the adjustments are applied. For example, Arctic Ocean phosphate, Indian Ocean silicate and  $\text{TCO}_2$ , and Pacific Ocean pH data all show considerable improvements.

The various iterations of GLODAP provide insight into initial data quality covering more than 4 decades. Figure 8 490 summarizes the applied absolute adjustment magnitude per decade. These distributions are broadly unchanged compared to GLODAPv2.2019 (Fig. 6 in Olsen et al., 2019) For several variables improvement is evident over time. Most  $\text{TCO}_2$  and TALK data from the 1970s needed an adjustment, but this fraction steadily declines until only a small percentage is adjusted. This is encouraging and demonstrates the value of standardizing sampling and measurement practices (Dickson et al., 2007), the widespread use of CRMs (Dickson et al., 2003), and instrument automation. The pH adjustment frequency also has a downward trend; however, there remains issues with the pH adjustments and this a topic for future 495 development in GLODAP, with the support from the OCB Carbonate System Intercomparison Forum (CSIF, <https://www.us-ocb.org/ocean-carbonate-system-intercomparison-forum/>, last accessed: 20 June 2020) working group (Álvarez et al., 2020). For the nutrients and oxygen, only the phosphate adjustment frequency decreases from decade to



decade. However, we do note that the more recent data, from the 2010s, receive the fewest adjustments. This may reflect recent increased attention that seawater nutrient measurements have received through an operation manual (Becker et al., 500 Hydes et al., 2012) availability of CRMNS (Aoyama et al., 2012; Ota et al., 2010), and the SCOR working group #147, Towards comparability of global oceanic nutrient data (COMPONUT). For silicate, the fraction of cruises receiving adjustments peaks in the 1990s and 2000s. This is related to the 2 % offset between US and Japanese cruises in the Pacific Ocean that was revealed during production of GLODAPv2 and discussed in Olsen et al. (2016). For salinity and the halogenated transient tracers, the number of adjusted cruises is small in every decade.

## 505 5 Data availability

The GLODAPv2.2020 merged and adjusted data product is archived at NOAA NCEI under <https://doi.org/10.25921/2c8h-sa89> (Olsen et al., 2020). These data and ancillary information are also available via our web pages <https://www.gladap.info> and [https://www.nodc.noaa.gov/ocads/oceans/GLODAPv2\\_2020/](https://www.nodc.noaa.gov/ocads/oceans/GLODAPv2_2020/) (last access: 22 June 2020). The data are available as comma-separated ascii files (\*.csv) and as binary MATLAB files (\*.mat). Regional 510 subsets are available for the Arctic, Atlantic, Pacific, and Indian oceans. There are no data overlaps between regional subsets and each cruise exists in only one basin file even if data from that cruise crosses basin boundaries. The station locations in each basin file are shown in Fig. 9. The product file variables are listed in Table 1. A lookup table for matching the EXPOCODE of a cruise with GLODAP cruise number is provided with the data files. In the MATLAB files this information is also available as a cell array. A “known issues document” accompanies the data files and provides an 515 overview of known errors and omissions in the data product files. It is regularly updated, and users are encouraged to inform us whenever any new issues are identified. It is critical that users consult this document whenever the data products are used.

The original cruise files are available through the GLODAPv2.2020 cruise summary table (CST) hosted by NOAA NCEI: [https://www.nodc.noaa.gov/ocads/oceans/GLODAPv2\\_2020/](https://www.nodc.noaa.gov/ocads/oceans/GLODAPv2_2020/) (Last access: 22 June 2020). Each of these files has 520 been assigned a doi, but these are not listed here. The CST also provides brief information on each cruise and access to metadata, cruise reports, and its Adjustment Table entry.

While GLODAPv2.2020 is made available without any restrictions, users of the data should adhere to the fair data use principles:

For investigations that rely on a particular (set of) cruise(s), recognize the contribution of GLODAP data contributors by 525 at least citing the articles where the data are described and, preferably, contacting principal investigators for exploring opportunities for collaboration and co-authorship. To this end, relevant articles and principle investigator names are provided in the CST. Contacting principle investigators comes with the additional benefit that the principal investigators often possess expert insight into the data and/or particular region under investigation. This can improve scientific quality and promote data sharing.

530 This paper should be cited in any scientific publications that result from usage of the product. Citations provide the most efficient means to track the use of this product, which is important for attracting funding to enable the preparation of future updates.



## 6 Summary

GLODAPv2.2020 is an update of GLODAPv2.2019. Data from 106 new cruises have been added to supplement the  
535 earlier release and extend temporal coverage by 2 years. GLODAP now includes 47 years, 1972–2019, of global interior  
ocean biogeochemical data from 946 cruises. Figure 10 illustrates the seasonal distribution of the data. As for previous  
540 versions there is a bias around summertime in the data in both hemispheres; most data are collected during April through  
November in the Northern Hemisphere while most data are collected during November through April in the Southern  
545 Hemisphere. These tendencies are strongest for the poleward regions and reflect the harsh conditions during winter  
months, which make fieldwork difficult. Figure 11 illustrates the distribution of data with depth. The upper 100 m is the  
best sampled part of the global ocean, both in terms of number (Fig. 11a) and density (Fig. 11b) of observations. The  
number of observations steadily declines with depth. In part, this is caused by the reduction of ocean volume towards  
greater depths. Below 1000 m the density of observations stabilizes and even increases between 5000 and 6000 m; the  
550 latter is a zone where the volume of each depth surface decreases sharply (Weatherall et al., 2015). In the deep trenches,  
i.e., areas deeper than ~6000 m, both number and density of observations are low.

Except for salinity and oxygen, the core data were collected exclusively through chemical analyses of individually  
555 collected water samples. The data of 12 core variables: salinity, oxygen, nitrate, silicate, phosphate, TCO<sub>2</sub>, TALK, pH,  
CFC-11, CFC-12, CFC-113, and CCl<sub>4</sub> were subjected to primary quality control to identify questionable or bad data  
points (outliers) and secondary quality control to identify systematic measurement biases. The data are provided in two  
ways: as a set of individual exchange formatted original cruise data files with assigned WOCE flags, and as globally and  
regionally merged data product files with adjustments applied to the data according to the outcome of the consistency  
analyses. Importantly, no adjustments were applied to data in the individual cruise files.

The consistency analyses were conducted by comparing the data from the 106 new cruises to GLODAPv2.2019.  
560 Adjustments were only applied when the offsets were believed to reflect biases relative to the earlier data product release  
related to measurement, calibration, and/or data handling practices and not natural variability or anthropogenic trends. The  
Adjustment Table at <https://glodapv2-2020.geomar.de/> (last access: 18 June 2020) lists all applied adjustments and  
provides a brief justification for each. The consistency analyses rely on deep ocean data (>1500 or 2000 dbar depending  
on region), but supplementary CANYON-B and CONTENT analyses consider data below 500 dbar. Data consistency  
for cruises with exclusively shallow sampling was not examined.

565 Secondary QC flags are included for the 12 core variables in the product files. These flags indicate whether (1) or not (0)  
the data successfully received secondary QC. A secondary QC flag of 0 does not by itself imply that the data are of lower  
quality than those with a flag of 1. It means these data have not been as thoroughly checked. For  $\delta^{13}\text{C}$ , the QC results by  
Becker et al. (2016) for the North Atlantic were applied, and a secondary QC flag was therefore added to this variable.  
The primary, WOCE, QC flags in the product files are simplified (e.g., all questionable and bad data were removed). For  
570 salinity, oxygen, and the nutrients, any data flagged 0 are interpolated rather than measured. For TCO<sub>2</sub>, TALK, pH, and  
 $\mu\text{CO}_2$  any data flagged 0 are calculated from two measured seawater CO<sub>2</sub> variables. Finally, while questionable (WOCE  
flag =3) and bad (WOCE flag =4) data have been excluded from the product files, some may have gone unnoticed  
through our analyses. Users are encouraged to report on any data that appear suspicious.

Based on the initial minimum adjustment limits and the improvement of the consistency from the adjustments (Table 6),  
575 the data subjected to consistency analyses are believed to be consistent to better than 0.005 in salinity, 1 % in oxygen, 2  
% in nitrate, 2 % in silicate, 2 % in phosphate, 4  $\mu\text{mol kg}^{-1}$  in TCO<sub>2</sub>, 4  $\mu\text{mol kg}^{-1}$  in TALK, and 5 % for the halogenated  
transient tracers. For pH, the consistency among all data is estimated as 0.01–0.02, depending on region.



## 7 Author contributions.

AO and TT led the team that produced this update. RMK, AK, and BP compiled the original data files. NL conducted the  
575 secondary QC analyses. HCB conducted the CANYON-B and CONTENT analyses. CS manages the Adjustment Table  
e-infrastructure. AK maintains the GLODAPv2 webpages at NCEI/OCADS while CSL maintains www.glodap.info. PM  
prepared PYTHON scripts for the merging of the data. All authors contributed to the interpretation of the secondary QC  
results and decisions on whether to apply actual adjustments. Many conducted ancillary QC analyses. AO wrote the  
manuscript with input from all authors.

580 **8 Competing interests**

The authors declare that they have no competing interests.

## 9 Acknowledgements

GLODAPv2.2020 would not have been possible without the effort of the many scientists who secured funding, dedicated  
time to collect, and shared the data that are included. Chief scientists at the various cruises and principal investigators for  
585 specific variables are listed in the online cruise summary table. NL was funded by EU Horizon 2020 through the EuroSea  
action (grant agreement 862626). LCC was supported by Prociencia/UERJ grant 2019-2021. MA was supported by IEO  
RADIALES and RADPROF projects. PJB was part-funded by the UK Climate Linked Atlantic Sector Science (CLASS)  
NERC National Capability Long-term Single Centre Science Programme (Grant NE/R015953/1). AV & FFP were  
supported by the BOCATS2 Project (PID2019-104279GB-C21) co-funded by the Spanish Government and the Fondo  
590 Europeo de Desarrollo Regional (FEDER). RW and BRC acknowledge the NOAA Global Observations and Monitoring  
Division (fund reference 100007298) and the Office of Oceanic and Atmospheric Research of NOAA. HCB gratefully  
acknowledges financial support by the BONUS INTEGRAL project (Grant No. 03F0773A). We acknowledge funding  
from the Initiative and Networking Fund of the Helmholtz Association through the project “Digital Earth” [ZT-0025].  
This is JISAO and PMEL contribution numbers 2020-1074 and 5112, respectively. This activity is supported by the  
595 IOCCP.

## References

Álvarez, M., Fajar, N. M., Carter, B. R., Guallart, E. F., Pérez, F. F., Woosley, R. J., and Murata, A.: Global ocean  
spectrophotometric pH assessment: consistent inconsistencies, *Environ. Sci. Technol.*, doi: 10.1021/acs.est.9b06932,  
2020. 2020.

600 Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-minute global relief model: procedures, data sources and analysis, NOAA  
Technical Memorandum NESDIS NGDC-24, National Geophysical Data Center, Marine Geology and Geophysics  
Division, Boulder, CO, U.S.A., 2009.

Aoyama, M.: Global certified-reference-material- or reference-material-scaled nutrient gridded dataset GND13, *Earth  
Syst. Sci. Data*, 12, 487-499, 2020.

605 Aoyama, M., Ota, H., Kimura, M., Kitao, T., Mitsuda, H., Murata, A., and Sato, K.: Current status of homogeneity and  
stability of the reference materials for nutrients in Seawater, *Anal. Sci.*, 28, 911-916, 2012.

Azetsu-Scott, K., Petrie, B., Yeats, P., and Lee, C.: Composition and fluxes of freshwater through Davis Strait using  
multiple chemical tracers, *J. Geophys. Res.-Oceans*, 117, 2012.

610 Becker, M., Andersen, N., Erlenkeuser, H., Humphreys, M. P., Tanhua, T., and Körtzinger, A.: An internally consistent  
dataset of  $\delta^{13}\text{C}$ -DIC in the North Atlantic Ocean - NAC13v1, *Earth Syst. Sci. Data*, 8, 559-570, 2016.

Becker, S., Aoyama, M., Woodward, E. M. S., Bakker, K., Coverly, S., Mahaffey, C., and Tanhua, T.: GO-SHIP repeat  
hydrography nutrient manual: The precise and accurate determination of dissolved inorganic nutrients in seawater,



615 using Continuous Flow Analysis methods. In: The GO-SHIP Repeat Hydrography Manual: A Collection of Expert Reports and Guidelines, Hood, E. M., Sabine, C., and Sloyan, B. M. (Eds.), IOCCTP Report Number 14, ICPO Publication Series Number 134, 2019.

Bittig, H. C., Steinhoff, T., Claustre, H., Fiedler, B., Williams, N. L., Sauzède, R., Körtzinger, A., and Gattuso, J.-P.: An alternative to static climatologies: Robust estimation of open ocean CO<sub>2</sub> variables and nutrient concentrations from T, S, and O<sub>2</sub> data using Bayesian Neural Networks, *Frontiers in Marine Science*, 5, 2018.

620 Bockmon, E. E. and Dickson, A. G.: An inter-laboratory comparison assessing the quality of seawater carbon dioxide measurements, *Mar. Chem.*, 171, 36-43, 2015.

Bryden, H. L.: New polynomials for thermal-expansion, adiabatic temperature gradient and potential temperature of seawater, *Deep-Sea Res.*, 20, 401-408, 1973.

Bu, X. and Warner, M. J.: Solubility of chlorofluorocarbon-113 in water and seawater, *Deep-Sea Res Pt I*, 42, 1151-1161, 1995.

625 Bullister, J. L. and Wisegarver, D. P.: The solubility of carbon tetrachloride in water and seawater, *Deep-Sea Res. Pt I*, 45, 1285-1302, 1998.

Bullister, J. L., Wisegarver, D. P., and Menzia, F. A.: The solubility of sulfur hexafluoride in water and seawater, *Deep-Sea Res. Pt I*, 49, 175-187, 2002.

630 Carter, B. R., Feely, R. A., Williams, N. L., Dickson, A. G., Fong, M. B., and Takeshita, Y.: Updated methods for global locally interpolated estimation of alkalinity, pH, and nitrate, *Limnol. Oceanogr.-Meth.*, 16, 119-131, 2018.

Cheng, L. J., Abraham, J., Zhu, J., Trenberth, K. E., Fasullo, J., Boyer, T., Locarnini, R., Zhang, B., Yu, F. J., Wan, L. Y., Chen, X. R., Song, X. Z., Liu, Y. L., and Mann, M. E.: Record-setting ocean warmth continued in 2019, *Adv. Atmos. Sci.*, 37, 137-142, 2020.

635 Cheng, L. J., Trenberth, K. E., Fasullo, J., Boyer, T., Abraham, J., and Zhu, J.: Improved estimates of ocean heat content from 1960 to 2015, *Sci. Adv.*, 3, 2017.

Dickson, A. G.: Standard potential of the reaction: AgCl(s) + ½H<sub>2</sub>(g) = Ag(s) + HCl(aq) and the standard acidity constant of the ion HSO<sub>4</sub><sup>-</sup> in synthetic sea water from 273.15 to 318.15 K, *J. Chem. Thermodyn.*, 22, 113-127, 1990.

Dickson, A. G., Afghan, J. D., and Anderson, G. C.: Reference materials for oceanic CO<sub>2</sub> analysis: a method for the certification of total alkalinity, *Mar. Chem.*, 80, 185-197, 2003.

640 Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to Best Practices for Ocean CO<sub>2</sub> measurements, PICES Special Publication 3, 191 pp., 2007.

Fofonoff, N. P.: Computation of potential temperature of seawater for an arbitrary reference pressure, *Deep-Sea Res.*, 24, 489-491, 1977.

Fong, M. B. and Dickson, A. G.: Insights from GO-SHIP hydrography data into the thermodynamic consistency of CO<sub>2</sub> system measurements in seawater, *Mar. Chem.*, 211, 52-63, 2019.

645 Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quere, C., Bakker, D. C. E., Canadell, J. G., Ciais, P., Jackson, R. B., Anthoni, P., Barbero, L., Bastos, A., Bastrikov, V., Becker, M., Bopp, L., Buitenhuis, E., Chandra, N., Chevallier, F., Chini, L. P., Currie, K. I., Feely, R. A., Gehlen, M., Gilfillan, D., Gkritzalis, T., Goll, D. S., Gruber, N., Gutekunst, S., Harris, I., Haverd, V., Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A. K., Joetzjer, E., Kaplan, J. O., Kato, E., Goldewijk, K. K., Korsbakken, J. I., Landschutze, P., Lauvset, S. K., Lefevre, N., Lenton, A., Lienert, S., Lombardozzi, D., Marland, G., McGuire, P. C., Melton, J. R., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S. I., Neill, C., Omar, A. M., Ono, T., Peregón, A., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rodenbeck, C., Seferian, R., Schwinger, J., Smith, N., Tans, P. P., Tian, H. Q., Tilbrook, B., Tubiello, F. N., van der Werf, G. R., Wiltshire, A. J., and Zaehle, S.: Global Carbon Budget 2019, *Earth Syst. Sci. Data*, 11, 1783-1838, 2019.

Friis, K., Körtzinger, A., and Wallace, D. W. R.: The salinity normalization of marine inorganic carbon chemistry data, *Geophys. Res. Lett.*, 30, 2003.

Garcia, H. E. and Gordon, L. I.: Oxygen solubility in seawater - Better fitting equations, *Limnol. Oceanogr.*, 37, 1307-1312, 1992.

660 Gruber, N., Clement, D., Carter, B. R., Feely, R. A., van Heuven, S., Hoppema, M., Ishii, M., Key, R. M., Kozyr, A., Lauvset, S. K., Lo Monaco, C., Mathis, J. T., Murata, A., Olsen, A., Perez, F. F., Sabine, C. L., Tanhua, T., and Wanninkhof, R.: The oceanic sink for anthropogenic CO<sub>2</sub> from 1994 to 2007, *Science*, 363, 1193-1199, 2019.

Hood, E. M., Sabine, C. L., and Sloyan, B. M.: The GO-SHIP hydrography manual: A collection of expert reports and guidelines, 2010.

665 Hydes, D. J., Aoyama, A., Aminot, A., Bakker, K., Becker, S., Coverly, S., Daniel, A., Dickson, A. G., Gross, O., Kerouel, R., van Ooijen, J., Sato, K., Tanhua, T., Woodward, E. M. S., and Zhang, J.-Z.: Determination of dissolved nutrients in seawater with high precision and intercomparability using gas-segmented continuous flow analysers. In: The GO-SHIP Repeat Hydrography Manual: A Collection of Expert Reports and Guidelines, Hood, E. M., Sabine, C., and Sloyan, B. M. (Eds.), IOCCTP Report Number 14, ICPO Publication Series Number 134, 2012.

670 Jeansson, E., Olsson, K. A., Tanhua, T., and Bullister, J. L.: Nordic Seas and Arctic Ocean CFC data in CARINA, *Earth Syst. Sci. Data*, 2, 79-97, 2010.



675 Jenkins, W. J., Doney, S. C., Fendrock, M., Fine, R., Gamo, T., Jean-Baptiste, P., Key, R., Klein, B., Lupton, J. E.,  
Newton, R., Rhein, M., Roether, W., Sano, Y. J., Schlitzer, R., Schlosser, P., and Swift, J.: A comprehensive global  
oceanic dataset of helium isotope and tritium measurements, *Earth Syst. Sci. Data*, 11, 441-454, 2019.

680 Jutterström, S., Anderson, L. G., Bates, N. R., Bellerby, R., Johannessen, T., Jones, E. P., Key, R. M., Lin, X., Olsen, A.,  
and Omar, A. M.: Arctic Ocean data in CARINA, *Earth Syst. Sci. Data*, 2, 71-78, 2010.

685 Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister, J. L., Feely, R. A., Millero, F. J., Mordy, C.,  
and Peng, T. H.: A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP), *Global  
Biogeochem. Cy.*, 18, 2004.

690 Key, R. M., Tanhua, T., Olsen, A., Hoppema, M., Jutterström, S., Schirnick, C., van Heuven, S., Kozyr, A., Lin, X., Velo,  
A., Wallace, D. W. R., and Mintrop, L.: The CARINA data synthesis project: introduction and overview, *Earth Syst.  
Sci. Data*, 2, 105-121, 2010.

695 King, B., Sanchez-Franks, A., Firing, Y. et al.: RRS James Cook Cruise JC159 28 February - 11 April 2018.  
Hydrographic sections from the Brazil to the Benguela Current across 24S in the Atlantic (National Oceanography  
Centre Cruise Report, 60), National Oceanography Centre, Southampton, 193 pp., 2019.

700 Lauvset, S. K. and Tanhua, T.: A toolbox for secondary quality control on ocean chemistry and hydrographic data,  
*Limnol. Oceanogr.-Meth.*, 13, 601-608, 2015.

705 Lewis, E. and Wallace, D. W. R.: Program developed for CO<sub>2</sub> system calculations, ORNL/CDIAC-105, Carbon Dioxide  
Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN, U.S.A., 1998.

710 Lueker, T. J., Dickson, A. G., and Keeling, C. D.: Ocean pCO<sub>2</sub> calculated from dissolved inorganic carbon, alkalinity, and  
equations for K-1 and K-2: validation based on laboratory measurements of CO<sub>2</sub> in gas and seawater at equilibrium,  
*Mar. Chem.*, 70, 105-119, 2000.

715 McGrath, T., Cronin, M., Kerrigan, E., Wallace, D., Gregory, C., Normandeau, C., and McGovern, E.: A rare  
intercomparison of nutrient analysis at sea: lessons learned and recommendations to enhance comparability of open-  
ocean nutrient data, *Earth Syst. Sci. Data*, 11, 355-374, 2019.

720 Oka, E., Ishii, M., Nakano, T., Suga, T., Kouketsu, S., Miyamoto, M., Nakano, H., Qiu, B., Sugimoto, S., and Takatani,  
Y.: Fifty years of the 137A degrees E repeat hydrographic section in the western North Pacific Ocean, *J. Oceanogr.*,  
74, 115-145, 2018.

725 Oka, E., Katsura, S., Inoue, H., Kojima, A., Kitamoto, M., Nakano, T., and Suga, T.: Long-term change and variation of  
salinity in the western North Pacific subtropical gyre revealed by 50-year long observations along 137 degrees E, *J.  
Oceanogr.*, 73, 479-490, 2017.

730 Olsen, A., Key, R. M., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X. H., Schirnick, C., Kozyr, A., Tanhua, T.,  
Hoppema, M., Jutterstrom, S., Steinfeldt, R., Jeansson, E., Ishii, M., Perez, F. F., and Suzuki, T.: The Global Ocean  
Data Analysis Project version 2 (GLODAPv2) - an internally consistent data product for the world ocean, *Earth Syst.  
Sci. Data*, 8, 297-323, 2016.

735 Olsen, A., Lange, N., Key, R. M., Tanhua, T., Bittig, H. C., Kozyr, A., Alvarez, M., Azetsu-Scott, K., Becker, S., Brown,  
P. J., Carter, B. R., Cotrim da Cunha, L., Feely, R. A., van Heuven, S., Hoppema, M., Ishii, M., Jeansson, E.,  
Jutterström, S., Landa, C. S., Lauvset, S., Michaelis, P., Murata, A., Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R.,  
Suzuki, T., Tilbrook, B., Velo, A., Wanninkhof, R., and Woosley, R. J.: Global ocean data analysis project version  
2.2020 (GLODAPv2.2020), NOAA, National Centers for Environmental Information, <https://doi.org/10.25921/2c8hsa89>, 2020.

740 Olsen, A., Lange, N., Key, R. M., Tanhua, T., Alvarez, M., Becker, S., Bittig, H. C., Carter, B. R., da Cunha, L. C., Feely,  
R. A., van Heuven, S., Hoppema, M., Ishii, M., Jeansson, E., Jones, S. D., Jutterstrom, S., Karlsen, M. K., Kozyr, A.,  
Lauvset, S. K., Lo Monaco, C., Murata, A., Perez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T., Telszewski,  
M., Tilbrook, B., Velo, A., and Wanninkhof, R.: GLODAPv2.2019-an update of GLODAPv2, *Earth Syst. Sci. Data*,  
11, 1437-1461, 2019.

745 Ota, H., Mitsuda, H., Kimura, M., and Kitao, T.: Reference materials for nutrients in seawater: Their development and  
present homogeneity and stability. In: *Comparability of nutrients in the world's oceans*, Aoyama, A., Dickson, A. G.,  
Hydes, D. J., Murata, A., Oh, J. R., Roose, P., and Woodward, E. M. S. (Eds.), Mother Tank, Tsukuba, Japan, 2010.

750 Panassa, E., Santana-Casiano, J. M., Gonzalez-Davila, M., Hoppema, M., van Heuven, S., Völker, C., Wolf-Gladrow, D.,  
and Hauck, J.: Variability of nutrients and carbon dioxide in the Antarctic Intermediate Water between 1990 and  
2014, *Ocean Dyn.*, 68, 295-308, 2018.

755 Pérez, F. F., Fontela, M., García-Ibáñez, M. I., Mercier, H., Velo, A., Lherminier, P., Zunino, P., de la Paz, M., Alonso-  
Pérez, F., Guallart, E. F., and Padin, X. A.: Meridional overturning circulation conveys fast acidification to the deep  
Atlantic Ocean, *Nature*, 554, 515-518, 2018.

760 Sabine, C., Key, R. M., Kozyr, A., Feely, R. A., Wanninkhof, R., Millero, F. J., Peng, T.-H., Bullister, J. L., and Lee, K.:  
Global Ocean Data Analysis Project (GLODAP): Results and Data, ORNL/CDIAC-145, NDP-083, Carbon Dioxide  
Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN, U.S.A.,  
2005.

765 Sérazin, G.: An approximate neutral density variable for the World's oceans, Master's Thesis, Ecole Centrale, Lyon,  
Ecully, France, 2011.



735 Sloyan, B. M., Wanninkhof, R., Kramp, M., Johnson, G. C., Talley, L. D., Tanhua, T., McDonagh, E., Cusack, C., O'Rourke, E., McGovern, E., Katsumata, K., Diggs, S., Hummon, J., Ishii, M., Azetsu-Scott, K., Boss, E., Ansorge, I., Perez, F. F., Mercier, H., Williams, M. J. M., Anderson, L., Lee, J. H., Murata, A., Kouketsu, S., Jeansson, E., Hoppe, M., and Campos, E.: The Global Ocean Ship-Based Hydrographic Investigations Program (GO-SHIP): A Platform for Integrated Multidisciplinary Ocean Science, *Frontiers in Marine Science*, 6, 2019.

740 Steinfeldt, R., Tanhua, T., Bullister, J. L., Key, R. M., Rhein, M., and Köhler, J.: Atlantic CFC data in CARINA, *Earth Syst. Sci. Data*, 2, 1-15, 2010.

745 Suzuki, T., Ishii, M., Aoyama, A., Christian, J. R., Enyo, K., Kawano, T., Key, R. M., Kosugi, N., Kozyr, A., Miller, L. A., Murata, A., Nakano, T., Ono, T., Saino, T., Sasaki, K., Sasano, D., Takatani, Y., Wakita, M., and Sabine, C.: PACIFICA Data Synthesis Project, ORNL/CDIAC-159, NDP-092, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U. S. Department of Energy, Oak Ridge, TN, U.S.A., 2013.

750 Swift, J. and Diggs, S. C.: Description of WHP exchange format for CTD/Hydrographic data, CLIVAR and Carbon Hydrographic Data Office, UCSD Scripps Institution of Oceanography, San Diego, Ca, US, 2008.

755 Takeshita, Y., Johnson, K. S., Coletti, L. J., Jannasch, H. W., Walz, P. M., and Warren, J. K.: Assessment of pH dependent errors in spectrophotometric pH measurements of seawater, *Mar. Chem.*, 223, 103801, 2020.

760 Talley, L. D., Feely, R. A., Sloyan, B. M., Wanninkhof, R., Baringer, M. O., Bullister, J. L., Carlson, C. A., Doney, S. C., Fine, R. A., Firing, E., Gruber, N., Hansell, D. A., Ishii, M., Johnson, G. C., Katsumata, K., Key, R. M., Kramp, M., Langdon, C., Macdonald, A. M., Mathis, J. T., McDonagh, E. L., Mecking, S., Millero, F. J., Mordy, C. W., Nakano, T., Sabine, C. L., Smethie, W. M., Swift, J. H., Tanhua, T., Thurnherr, A. M., Warner, M. J., and Zhang, J. Z.: Changes in ocean heat, carbon content, and ventilation: A review of the first decade of GO-SHIP global repeat hydrography, *Annu. Rev. Mar. Sci.*, 8, 185-215, 2016.

765 Tanhua, T., van Heuven, S., Key, R. M., Velo, A., Olsen, A., and Schirnick, C.: Quality control procedures and methods of the CARINA database, *Earth Syst. Sci. Data*, 2, 35-49, 2010.

770 UNESCO: Tenth report of the joint panel on oceanographic tables and standards, UNESCO Technical Paper in Marine Science, 36, 13-21, 1981.

775 Uppström, L. R.: Boron/Chlorinity ratio of deep-sea water from Pacific Ocean, *Deep-Sea Res.*, 21, 161-162, 1974.

780 van Heuven, S., Pierrot, D., Rae, J. W. B., Lewis, E., and Wallace, D. W. R.: MATLAB program developed for CO<sub>2</sub> system calculations, ORNL/CDIAC-105b, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN, U.S.A., 2011.

785 Voelker, A. H. L., Colman, A., Olack, G., Waniek, J. J., and Hodell, D.: Oxygen and hydrogen isotope signatures of Northeast Atlantic water masses, *Deep-Sea Res. Pt II*, 116, 89-106, 2015.

790 Warner, M. J. and Weiss, R. F.: Solubilities of chlorofluorocarbon-11 and chlorofluorocarbon-12 in water and seawater, *Deep-Sea Res.*, 32, 1485-1497, 1985.

795 Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G., Groth, P., Goble, C., Grethe, J. S., Heringa, J., 't Hoen, P. A. C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., van Schaik, R., Sansone, S.-A., Schulz, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., van der Lei, J., van Mulligen, E., Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B.: The FAIR Guiding Principles for scientific data management and stewardship, *Scientific Data*, 3, 160018, 2016.



775

**Table 1.** Variables in the GLODAPv2.2020 comma separated (csv) product files, their units, short and flag names, and corresponding names in the individual cruise exchange files. In the MATLAB product files that are also supplied a "G2" has been added to every variable name.

| Variable                                        | Units                 | Product file name | WOCE flag name <sup>a</sup> | 2nd QC flag name <sup>b</sup> | Exchange file name |
|-------------------------------------------------|-----------------------|-------------------|-----------------------------|-------------------------------|--------------------|
| Assigned sequential cruise number               |                       | cruise            |                             |                               |                    |
| Station                                         |                       | station           |                             |                               | STANBR             |
| Cast                                            |                       | cast              |                             |                               | CASTNO             |
| Year                                            |                       | year              |                             |                               | DATE               |
| Month                                           |                       | month             |                             |                               | DATE               |
| Day                                             |                       | day               |                             |                               | DATE               |
| Hour                                            |                       | hour              |                             |                               | TIME               |
| Minute                                          |                       | minute            |                             |                               | TIME               |
| Latitude                                        |                       | latitude          |                             |                               | LATITUDE           |
| Longitude                                       |                       | longitude         |                             |                               | LONGITUDE          |
| Bottom depth                                    | m                     | bottomdepth       |                             |                               |                    |
| Pressure of the deepest sample                  | dbar                  | maxsampdepth      |                             |                               | DEPTH              |
| Niskin bottle number                            |                       | bottle            |                             |                               | BTLNBR             |
| Sampling pressure                               | dbar                  | pressure          |                             |                               | CTDPRS             |
| Sampling depth                                  | m                     | depth             |                             |                               |                    |
| Temperature                                     | °C                    | temperature       |                             |                               | CTDTMP             |
| potential temperature                           | °C                    | theta             |                             |                               |                    |
| Salinity                                        |                       | salinity          | salinityf                   | salinityqc                    | CTDSAL/SALNTY      |
| Potential density anomaly                       | kg m <sup>-3</sup>    | sigma0            | (salinityf)                 |                               |                    |
| Potential density anomaly, ref                  | kg m <sup>-3</sup>    | sigma1            | (salinityf)                 |                               |                    |
| 1000 dbar                                       |                       |                   |                             |                               |                    |
| Potential density anomaly, ref                  | kg m <sup>-3</sup>    | sigma2            | (salinityf)                 |                               |                    |
| 2000 dbar                                       |                       |                   |                             |                               |                    |
| Potential density anomaly, ref                  | kg m <sup>-3</sup>    | sigma3            | (salinityf)                 |                               |                    |
| 3000 dbar                                       |                       |                   |                             |                               |                    |
| Potential density anomaly, ref                  | kg m <sup>-3</sup>    | sigma4            | (salinityf)                 |                               |                    |
| 4000 dbar                                       |                       |                   |                             |                               |                    |
| Neutral density anomaly                         | kg m <sup>-3</sup>    | gamma             | (salinityf)                 |                               |                    |
| Oxygen                                          | µmol kg <sup>-1</sup> | oxygen            | oxygenf                     | oxygenqc                      | CTDOXY/OXYGEN      |
| Apparent oxygen utilization                     | µmol kg <sup>-1</sup> | aou               | aouf                        |                               |                    |
| Nitrate                                         | µmol kg <sup>-1</sup> | nitrate           | nitratef                    | nitrateqc                     | NITRAT             |
| Nitrite                                         | µmol kg <sup>-1</sup> | nitrite           | nitritef                    |                               | NITRIT             |
| Silicate                                        | µmol kg <sup>-1</sup> | silicate          | silicatef                   | silicateqc                    | SILCAT             |
| Phosphate                                       | µmol kg <sup>-1</sup> | phosphate         | phosphatef                  | phosphateqc                   | PHSPHT             |
| TCO <sub>2</sub>                                | µmol kg <sup>-1</sup> | tco2              | tco2f                       | tco2qc                        | TCARBON            |
| TAlk                                            | µmol kg <sup>-1</sup> | talk              | talkf                       | talkqc                        | ALKALI             |
| pH on total scale, 25° C and 0 dbar of pressure |                       | phts25p0          | phts25p0f                   | phtsqc                        | PH_TOT             |



| Variable                                            | Units                               | Product file name | WOCE flag name <sup>a</sup> | 2nd QC flag name <sup>b</sup> | Exchange file name |
|-----------------------------------------------------|-------------------------------------|-------------------|-----------------------------|-------------------------------|--------------------|
| pH on total scale, in situ temperature and pressure |                                     | phtsinsitup       | phtsinsitupf                | phtsqc                        |                    |
| $\text{fCO}_2$ at 20° C and 0 dbar of pressure      | $\mu\text{atm}$                     | fco2              | fco2f                       |                               | FCO2/PCO2          |
| $\text{fCO}_2$ temperature <sup>c</sup>             | °C                                  | fco2temp          | (fco2f)                     |                               | FCO2_TMP/PCO2_TMP  |
| CFC-11                                              | $\text{pmol kg}^{-1}$               | cfc11             | cfc11f                      | cfc11qc                       | CFC-11             |
| pCFC-11                                             | ppt                                 | pcf11             | (pcf11f)                    |                               |                    |
| CFC-12                                              | $\text{pmol kg}^{-1}$               | cfc12             | cfc12f                      | cfc12qc                       | CFC-12             |
| pCFC-12                                             | ppt                                 | pcf12             | (pcf12f)                    |                               |                    |
| CFC-113                                             | $\text{pmol kg}^{-1}$               | cfc113            | cfc113f                     | cfc113qc                      | CFC-113            |
| pCFC-113                                            | ppt                                 | pcf113            | (pcf113f)                   |                               |                    |
| CCl <sub>4</sub>                                    | $\text{pmol kg}^{-1}$               | ccl4              | ccl4f                       | ccl4qc                        | CCL4               |
| pCCl <sub>4</sub>                                   | ppt                                 | pccl4             | (pccl4f)                    |                               |                    |
| SF <sub>6</sub>                                     | $\text{fmol kg}^{-1}$               | sf6               | sf6f                        |                               | SF6                |
| pSF6                                                | ppt                                 | psf6              | (psf6f)                     |                               |                    |
| $\delta^{13}\text{C}$                               | ‰                                   | c13               | c13f                        | c13qc                         | DELC13             |
| $\Delta^{14}\text{C}$                               | ‰                                   | c14               | c14f                        |                               | DELC14             |
| $\Delta^{14}\text{C}$ counting error                | ‰                                   | c14err            |                             |                               | C14ERR             |
| <sup>3</sup> H                                      | TU                                  | h3                | h3f                         |                               | TRITIUM            |
| <sup>3</sup> H counting error                       | TU                                  | h3err             |                             |                               | TRITER             |
| $\delta^3\text{He}$                                 | %                                   | he3               | he3f                        |                               | DELHE3             |
| <sup>3</sup> He counting error                      | %                                   | he3err            |                             |                               | DELHER             |
| He                                                  | $\text{nmol kg}^{-1}$               | he                | hef                         |                               | HELIOUM            |
| He counting error                                   | $\text{nmol kg}^{-1}$               | heerr             |                             |                               | HELIER             |
| Ne                                                  | $\text{nmol kg}^{-1}$               | neon              | neonf                       |                               | NEON               |
| Ne counting error                                   | $\text{nmol kg}^{-1}$               | neonerr           |                             |                               | NEONER             |
| $\delta^{18}\text{O}$                               | ‰                                   | o18               | o18f                        |                               | DELO18             |
| Total organic carbon                                | $\mu\text{mol L}^{-1}$ <sup>d</sup> | toc               | tocf                        |                               | TOC                |
| Dissolved organic carbon                            | $\mu\text{mol L}^{-1}$ <sup>d</sup> | doc               | docf                        |                               | DOC                |
| Dissolved organic nitrogen                          | $\mu\text{mol L}^{-1}$ <sup>d</sup> | don               | donf                        |                               | DON                |
| Dissolved total nitrogen                            | $\mu\text{mol L}^{-1}$ <sup>d</sup> | tdn               | tdnf                        |                               | TDN                |
| Chlorophyll <i>a</i>                                | $\mu\text{g kg}^{-1}$ <sup>d</sup>  | chl <sub>a</sub>  | chlaf                       |                               | CHLORA             |

<sup>a</sup>The only derived variable assigned a separate WOCE flag is AOU as it depends strongly on both temperature and oxygen (and less strongly on salinity). For the other derived variables, the applicable WOCE flag is given in parenthesis. <sup>b</sup> Secondary QC flags indicate whether data have been subjected to full secondary QC (1) or not (0), as described in Sect. 3. <sup>c</sup> Included for clarity, is 20 °C for all occurrences. <sup>d</sup>Units have not been checked; some values in micromoles per kilogram (for TOC, DOC, DON, TDN) or microgram per liter (for Chl *a*) are probable.



**Table 2.** WOCE flags in GLODAPv2.2020 exchange format original data files and product files.

| WOCE Flag Value | Interpretation                          |                                  |
|-----------------|-----------------------------------------|----------------------------------|
|                 | Original data exchange files            | Merged product files             |
| 0               | Not used                                | Interpolated or calculated value |
| 1               | Data not received                       | Not used <sup>a</sup>            |
| 2               | Acceptable                              | Acceptable                       |
| 3               | Questionable                            | Not used <sup>b</sup>            |
| 4               | Bad                                     | Not used <sup>b</sup>            |
| 5               | Value not reported                      | Not used <sup>b</sup>            |
| 6               | Average of replicate                    | Not used <sup>c</sup>            |
| 7               | Manual chromatographic peak measurement | Not used <sup>c</sup>            |
| 8               | Irregular digital peak measurement      | Not used <sup>b</sup>            |
| 9               | Sample not drawn                        | No data                          |

<sup>a</sup>Flag set to 9 in product files

785 <sup>b</sup>Data are not included in the GLODAPv2.2020 product files and their flags set to 9.

<sup>c</sup>Data are included, but flag set to 2



**Table 3.** Initial minimum adjustment limits.

| Variable         | Minimum Adjustment        |
|------------------|---------------------------|
| Salinity         | 0.005                     |
| Oxygen           | 1 %                       |
| Nutrients        | 2 %                       |
| TCO <sub>2</sub> | 4 $\mu\text{mol kg}^{-1}$ |
| TAlk             | 4 $\mu\text{mol kg}^{-1}$ |
| pH               | 0.01                      |
| CFCs             | 5 %                       |



**Table 4.** Summary of salinity and oxygen calibration needs and actions; number of cruises with each of the scenarios identified.

| Case | Description                                                                                                                                               | Salinity | Oxygen |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|
| 1    | No data are available: no action needed.                                                                                                                  | 0        | 8      |
| 2    | No bottle values present: use CTD derived values.                                                                                                         | 20       | 5      |
| 3    | No CTD values present: use bottle data.                                                                                                                   | 0        | 67     |
| 4    | Too few data of both types for comparison and >80% of records have bottle values: use bottle values.                                                      | 0        | 0      |
| 5    | The CTD values do not deviate significantly from bottle values: replace missing bottle values with CTD values.                                            | 86       | 23     |
| 6    | The CTD values deviate significantly from bottle values: calibrate these using linear fit and replace missing bottle values with calibrated CTD values.   | 0        | 1      |
| 7    | The CTD values deviate significantly from bottle values, and no good linear fit can be obtained for the cruise: use bottle values and discard CTD values. | 0        | 2      |



795 **Table 5.** Summary of secondary QC results for the 106 new cruises, in number of cruises per result and per variable.

|                         | Sal. | Oxy. | NO <sub>3</sub> | Si | PO <sub>4</sub> | TCO <sub>2</sub> | TAlk | pH | CFC-11 | CFC-12 | CFC-113 | CCL <sub>4</sub> |
|-------------------------|------|------|-----------------|----|-----------------|------------------|------|----|--------|--------|---------|------------------|
| With data               | 106  | 101  | 97              | 97 | 97              | 92               | 96   | 82 | 16     | 21     | 3       | 0                |
| No data                 | 0    | 5    | 9               | 9  | 9               | 14               | 10   | 24 | 90     | 85     | 103     | 106              |
| Unadjusted <sup>a</sup> | 89   | 85   | 82              | 73 | 75              | 68               | 67   | 65 | 12     | 17     | 2       | 0                |
| Adjusted <sup>b</sup>   | 0    | 1    | 1               | 9  | 7               | 2                | 6    | 0  | 1      | 2      | 0       | 0                |
| -888 <sup>c</sup>       | 17   | 14   | 14              | 14 | 14              | 22               | 23   | 12 | 2      | 2      | 1       | 0                |
| -666 <sup>d</sup>       | 0    | 0    | 0               | 0  | 0               | 0                | 0    | 5  | 0      | 0      | 0       | 0                |
| -777 <sup>e</sup>       | 0    | 1    | 0               | 1  | 1               | 0                | 0    | 0  | 1      | 0      | 0       | 0                |

<sup>a</sup>The data are included in the data product file as is, with a secondary QC flag of 1.

<sup>b</sup>The adjusted data are included in the data product file with a secondary QC flag of 1.

<sup>c</sup>Data appear of good quality but have not been subjected to full secondary QC. They are included in data product with a secondary QC flag of 0.

800 <sup>d</sup>Data are of uncertain quality and suspended until full secondary QC has been carried out; they are excluded from the data product.

<sup>e</sup>Data are of poor quality and excluded from the data product.



805

**Table 6.** Improvements resulting from quality control of the 106 new cruises, per basin and for the global data set. The numbers in the table are the weighted mean of the absolute offset of unadjusted and adjusted data versus GLODAPv2.2019.  $n$  is the total number of valid crossovers in the global ocean for the variable in question.

|                                      | ARCTIC |     | ATLANTIC |     | INDIAN |     | PACIFIC |     | GLOBAL |     | $n$<br>(global) |     |     |    |     |      |
|--------------------------------------|--------|-----|----------|-----|--------|-----|---------|-----|--------|-----|-----------------|-----|-----|----|-----|------|
|                                      | Unadj  | Adj | Unadj    | Adj | Unadj  | Adj | Unadj   | Adj | Unadj  | Adj |                 |     |     |    |     |      |
| <b>Sal ( x1000)</b>                  | 1.7    | =>  | 1.7      | 5.6 | =>     | 5.6 | 4.0     | =>  | 4.0    | 1.9 | =>              | 1.9 | 2.4 | => | 2.4 | 2841 |
| <b>Oxy (%)</b>                       | 0.8    | =>  | 0.8      | 0.7 | =>     | 0.7 | 0.5     | =>  | 0.5    | 0.5 | =>              | 0.5 | 0.5 | => | 0.5 | 2462 |
| <b>NO<sub>3</sub> (%)</b>            | 0.9    | =>  | 0.9      | 1.6 | =>     | 1.5 | 0.6     | =>  | 0.6    | 0.5 | =>              | 0.5 | 0.5 | => | 0.5 | 2158 |
| <b>Si (%)</b>                        | 3.6    | =>  | 3.6      | 2.5 | =>     | 2.4 | 1.9     | =>  | 1.1    | 1.0 | =>              | 0.8 | 1.0 | => | 0.8 | 1956 |
| <b>PO<sub>4</sub> (%)</b>            | 5.0    | =>  | 2.6      | 2.2 | =>     | 2.0 | 0.8     | =>  | 0.8    | 0.8 | =>              | 0.7 | 0.8 | => | 0.8 | 2047 |
| <b>TCO<sub>2</sub><br/>(μmol/kg)</b> | 3.4    | =>  | 3.4      | 2.6 | =>     | 2.6 | 1.9     | =>  | 1.9    | 2.1 | =>              | 1.8 | 2.2 | => | 1.9 | 512  |
| <b>TAalk<br/>(μmol/kg)</b>           | 2.9    | =>  | 2.9      | 1.7 | =>     | 1.7 | 2.4     | =>  | 1.6    | 2.5 | =>              | 2.1 | 2.4 | => | 2.1 | 521  |
| <b>pH ( x1000)</b>                   | NA     | =>  | NA       | 8.5 | =>     | 8.5 | NA      | =>  | NA     | 8.3 | =>              | 7.4 | 8.3 | => | 7.5 | 458  |



810

**Appendix A. Supplementary tables**

**Table A1.** Cruises included in GLODAPv2.2020 that did not appear in GLODAPv2.2019. Complete information on each cruise, such as variables included, and chief scientist and principal investigator names is provided in the cruise summary table at [https://www.nodc.noaa.gov/ocads/oceans/GLODAPv2\\_2020/cruise\\_table\\_v2020.html](https://www.nodc.noaa.gov/ocads/oceans/GLODAPv2_2020/cruise_table_v2020.html)

| No   | EXPOCODE     | Region   | Alias                        | Start    | End      | Ship                       |
|------|--------------|----------|------------------------------|----------|----------|----------------------------|
| 2001 | 06M220120625 | Atlantic | MSM21/2                      | 20120625 | 20120724 | <i>Maria S. Merian</i>     |
| 2002 | 06M220130419 | Atlantic | MSM27                        | 20130419 | 20130506 | <i>Maria S. Merian</i>     |
| 2003 | 06M220130509 | Atlantic | MSM28                        | 20130509 | 20130620 | <i>Maria S. Merian</i>     |
| 2004 | 06M220140507 | Atlantic | MSM38                        | 20140507 | 20140605 | <i>Maria S. Merian</i>     |
| 2005 | 06M220150502 | Atlantic | MSM42                        | 20150502 | 20150522 | <i>Maria S. Merian</i>     |
| 2006 | 06M220150525 | Atlantic | MSM43                        | 20150525 | 20150627 | <i>Maria S. Merian</i>     |
| 2007 | 06M320100804 | Atlantic | M82/2                        | 20100804 | 20100901 | <i>Meteor</i>              |
| 2008 | 096U20180111 | Indian   | SR03.2018                    | 20180111 | 20180222 | <i>Investigator</i>        |
| 2009 | 18HU20050904 | Atlantic | Davis Strait 2005            | 20050904 | 20050922 | <i>Hudson</i>              |
| 2010 | 18SN20150920 | Arctic   | JOIS2015                     | 20150920 | 20151016 | <i>Louis S. St-Laurent</i> |
| 2011 | 29AH20160617 | Atlantic | OVIDE-16, A25, A01W          | 20160617 | 20160731 | <i>Sarmiento de Gamboa</i> |
| 2012 | 29GD20120910 | Atlantic | EUROFLEETS                   | 20120910 | 20120915 | <i>Garcia del Cid</i>      |
| 2013 | 29HE20190406 | Atlantic | FICARAM_XIX, A17             | 20190406 | 20190518 | <i>Hesperides</i>          |
| 2014 | 316N20040922 | Atlantic | Davis Strait 2004, KN179-05  | 20040922 | 20041004 | <i>Knorr</i>               |
| 2015 | 316N20061001 | Atlantic | Davis Strait 2006, KN187-02  | 20061001 | 20061004 | <i>Knorr</i>               |
| 2016 | 316N20071003 | Atlantic | Davis Strait 2007, DKN192-02 | 20071003 | 20071021 | <i>Knorr</i>               |
| 2017 | 316N20080901 | Atlantic | Davis Strait 2008, KN194-02  | 20080901 | 20080922 | <i>Knorr</i>               |
| 2018 | 316N20091006 | Atlantic | Davis Strait 2009, KN196-02  | 20091006 | 20091028 | <i>Knorr</i>               |
| 2019 | 316N20100804 | Atlantic | Davis Strait 2010            | 20100804 | 20100929 | <i>Knorr</i>               |
| 2020 | 316N20101015 | Atlantic | KN199-04, GEOTRACES-2010     | 20101015 | 20101105 | <i>Knorr</i>               |
| 2021 | 316N20111002 | Atlantic | Davis Strait 2011, KN203-04  | 20111002 | 20111021 | <i>Knorr</i>               |
| 2022 | 316N20130914 | Atlantic | Davis Strait 2013, KN213-02  | 20130914 | 20131003 | <i>Knorr</i>               |
| 2023 | 316N20150906 | Atlantic | Davis Strait 2015            | 20150906 | 20150924 | <i>Knorr</i>               |
| 2024 | 32WC20110812 | Pacific  | WCOA2011                     | 20110812 | 20110830 | <i>Wecoma</i>              |
| 2025 | 33RO20160505 | Pacific  | WCOA2016                     | 20160505 | 20160606 | <i>Ronald H. Brown</i>     |
| 2026 | 35TH20080825 | Atlantic | SUBPOLAR08                   | 20080825 | 20080915 | <i>Thalassa</i>            |
| 2027 | 45CE20170427 | Atlantic | CE17007, A02                 | 20170427 | 20170522 | <i>Celtic Explorer</i>     |
| 2028 | 49UF20101002 | Pacific  | ks201007                     | 20101002 | 20101104 | <i>Keifu Maru II</i>       |
| 2029 | 49UF20101109 | Pacific  | ks201008                     | 20101109 | 20101126 | <i>Keifu Maru II</i>       |
| 2030 | 49UF20101203 | Pacific  | ks201009                     | 20101203 | 20101222 | <i>Keifu Maru II</i>       |
| 2031 | 49UF20111004 | Pacific  | ks201109                     | 20111004 | 20111127 | <i>Keifu Maru II</i>       |
| 2032 | 49UF20111205 | Pacific  | ks201110                     | 20111205 | 20111221 | <i>Keifu Maru II</i>       |
| 2033 | 49UF20120410 | Pacific  | ks201203                     | 20120410 | 20120424 | <i>Keifu Maru II</i>       |
| 2034 | 49UF20120602 | Pacific  | ks201205                     | 20120602 | 20120614 | <i>Keifu Maru II</i>       |
| 2035 | 49UF20131006 | Pacific  | ks201307                     | 20131006 | 20131022 | <i>Keifu Maru II</i>       |
| 2036 | 49UF20131029 | Pacific  | ks201308                     | 20131029 | 20131210 | <i>Keifu Maru II</i>       |
| 2037 | 49UF20140107 | Pacific  | ks201401                     | 20140107 | 20140125 | <i>Keifu Maru II</i>       |
| 2038 | 49UF20140206 | Pacific  | ks201402                     | 20140206 | 20140326 | <i>Keifu Maru II</i>       |
| 2039 | 49UF20140410 | Pacific  | ks201403                     | 20140410 | 20140505 | <i>Keifu Maru II</i>       |
| 2040 | 49UF20140512 | Pacific  | ks201404                     | 20140512 | 20140617 | <i>Keifu Maru II</i>       |
| 2041 | 49UF20140623 | Pacific  | ks201405, P09, P13           | 20140623 | 20140826 | <i>Keifu Maru II</i>       |
| 2042 | 49UF20140904 | Pacific  | ks201406                     | 20140904 | 20141019 | <i>Keifu Maru II</i>       |



|      |              |         |                    |          |          |                       |
|------|--------------|---------|--------------------|----------|----------|-----------------------|
| 2043 | 49UF20150107 | Pacific | ks201501           | 20150107 | 20150126 | <i>Keifu Maru II</i>  |
| 2044 | 49UF20150202 | Pacific | ks201502           | 20150202 | 20150306 | <i>Keifu Maru II</i>  |
| 2045 | 49UF20150415 | Pacific | ks201504           | 20150415 | 20150504 | <i>Keifu Maru II</i>  |
| 2046 | 49UF20150511 | Pacific | ks201505           | 20150511 | 20150611 | <i>Keifu Maru II</i>  |
| 2047 | 49UF20150620 | Pacific | ks201506, P09, P13 | 20150620 | 20150823 | <i>Keifu Maru II</i>  |
| 2048 | 49UF20151021 | Pacific | ks201508           | 20151021 | 20151202 | <i>Keifu Maru II</i>  |
| 2049 | 49UF20160107 | Pacific | ks201601           | 20160107 | 20160126 | <i>Keifu Maru II</i>  |
| 2050 | 49UF20160201 | Pacific | ks201602           | 20160201 | 20160310 | <i>Keifu Maru II</i>  |
| 2051 | 49UF20160407 | Pacific | ks201604           | 20160407 | 20160507 | <i>Keifu Maru II</i>  |
| 2052 | 49UF20160512 | Pacific | ks201605           | 20160512 | 20160610 | <i>Keifu Maru II</i>  |
| 2053 | 49UF20160618 | Pacific | ks201606           | 20160618 | 20160723 | <i>Keifu Maru II</i>  |
| 2054 | 49UF20160730 | Pacific | ks201607           | 20160730 | 20160912 | <i>Keifu Maru II</i>  |
| 2055 | 49UF20160917 | Pacific | ks201608           | 20160917 | 20161007 | <i>Keifu Maru II</i>  |
| 2056 | 49UF20161116 | Pacific | ks201609           | 20161116 | 20161219 | <i>Keifu Maru II</i>  |
| 2057 | 49UF20170110 | Pacific | ks201701, P09, P10 | 20170110 | 20170223 | <i>Keifu Maru II</i>  |
| 2058 | 49UF20170228 | Pacific | ks201702           | 20170228 | 20170326 | <i>Keifu Maru II</i>  |
| 2059 | 49UF20170408 | Pacific | ks201703           | 20170408 | 20170426 | <i>Keifu Maru II</i>  |
| 2060 | 49UF20170502 | Pacific | ks201704           | 20170502 | 20170606 | <i>Keifu Maru II</i>  |
| 2061 | 49UF20170612 | Pacific | ks201705           | 20170612 | 20170713 | <i>Keifu Maru II</i>  |
| 2062 | 49UF20170719 | Pacific | ks201706, P09, P10 | 20170719 | 20170907 | <i>Keifu Maru II</i>  |
| 2063 | 49UF20171107 | Pacific | ks201708           | 20171107 | 20171208 | <i>Keifu Maru II</i>  |
| 2064 | 49UF20180129 | Pacific | ks201802           | 20180129 | 20180309 | <i>Keifu Maru II</i>  |
| 2065 | 49UF20180406 | Pacific | ks201804           | 20180406 | 20180512 | <i>Keifu Maru II</i>  |
| 2066 | 49UF20180518 | Pacific | ks201805           | 20180518 | 20180703 | <i>Keifu Maru II</i>  |
| 2067 | 49UF20180709 | Pacific | ks201806           | 20180709 | 20180829 | <i>Keifu Maru II</i>  |
| 2068 | 49UF20180927 | Pacific | ks201808           | 20180927 | 20181021 | <i>Keifu Maru II</i>  |
| 2069 | 49UP20110912 | Pacific | rf201109           | 20110912 | 20110929 | <i>Ryofu Maru III</i> |
| 2070 | 49UP20120306 | Pacific | rf201202           | 20120306 | 20120325 | <i>Ryofu Maru III</i> |
| 2071 | 49UP20121116 | Pacific | rf201208           | 20121116 | 20121218 | <i>Ryofu Maru III</i> |
| 2072 | 49UP20130307 | Pacific | rf201302           | 20130307 | 20130327 | <i>Ryofu Maru III</i> |
| 2073 | 49UP20130426 | Pacific | rf201304           | 20130426 | 20130527 | <i>Ryofu Maru III</i> |
| 2074 | 49UP20131128 | Pacific | rf201310           | 20131128 | 20131223 | <i>Ryofu Maru III</i> |
| 2075 | 49UP20140108 | Pacific | rf201401, P09, P10 | 20140108 | 20140301 | <i>Ryofu Maru III</i> |
| 2076 | 49UP20140307 | Pacific | rf201402           | 20140307 | 20140326 | <i>Ryofu Maru III</i> |
| 2077 | 49UP20140429 | Pacific | rf201404           | 20140429 | 20140530 | <i>Ryofu Maru III</i> |
| 2078 | 49UP20140609 | Pacific | rf201405           | 20140609 | 20140629 | <i>Ryofu Maru III</i> |
| 2079 | 49UP20141112 | Pacific | rf201409           | 20141112 | 20141202 | <i>Ryofu Maru III</i> |
| 2080 | 49UP20150110 | Pacific | rf201501           | 20150110 | 20150223 | <i>Ryofu Maru III</i> |
| 2081 | 49UP20150228 | Pacific | rf201502           | 20150228 | 20150326 | <i>Ryofu Maru III</i> |
| 2082 | 49UP20150408 | Pacific | rf201503           | 20150408 | 20150419 | <i>Ryofu Maru III</i> |
| 2083 | 49UP20150426 | Pacific | rf201504           | 20150426 | 20150528 | <i>Ryofu Maru III</i> |
| 2084 | 49UP20150604 | Pacific | rf201505           | 20150604 | 20150623 | <i>Ryofu Maru III</i> |
| 2085 | 49UP20150627 | Pacific | rf201506           | 20150627 | 20150716 | <i>Ryofu Maru III</i> |
| 2086 | 49UP20151115 | Pacific | rf201509           | 20151115 | 20151216 | <i>Ryofu Maru III</i> |
| 2087 | 49UP20160109 | Pacific | rf201601, P09, P10 | 20160109 | 20160222 | <i>Ryofu Maru III</i> |
| 2088 | 49UP20160227 | Pacific | rf201602           | 20160227 | 20160324 | <i>Ryofu Maru III</i> |
| 2089 | 49UP20160408 | Pacific | rf201603           | 20160408 | 20160421 | <i>Ryofu Maru III</i> |
| 2090 | 49UP20160427 | Pacific | rf201604           | 20160427 | 20160601 | <i>Ryofu Maru III</i> |



|      |              |          |                   |          |          |                       |
|------|--------------|----------|-------------------|----------|----------|-----------------------|
| 2091 | 49UP20160608 | Pacific  | rf201605          | 20160608 | 20160628 | <i>Ryofu Maru III</i> |
| 2092 | 49UP20161021 | Pacific  | rf201608          | 20161021 | 20161206 | <i>Ryofu Maru III</i> |
| 2093 | 49UP20170107 | Pacific  | rf201701          | 20170107 | 20170126 | <i>Ryofu Maru III</i> |
| 2094 | 49UP20170201 | Pacific  | rf201702          | 20170201 | 20170310 | <i>Ryofu Maru III</i> |
| 2095 | 49UP20170425 | Pacific  | rf201705          | 20170425 | 20170508 | <i>Ryofu Maru III</i> |
| 2096 | 49UP20170623 | Pacific  | rf201707          | 20170623 | 20170827 | <i>Ryofu Maru III</i> |
| 2097 | 49UP20170815 | Pacific  | rf201708          | 20170815 | 20171006 | <i>Ryofu Maru III</i> |
| 2098 | 49UP20171125 | Pacific  | rf201710          | 20171125 | 20171224 | <i>Ryofu Maru III</i> |
| 2099 | 49UP20180110 | Pacific  | rf201801          | 20180110 | 20180222 | <i>Ryofu Maru III</i> |
| 2100 | 49UP20180228 | Pacific  | rf201802          | 20180228 | 20180326 | <i>Ryofu Maru III</i> |
| 2101 | 49UP20180501 | Pacific  | rf201804          | 20180501 | 20180605 | <i>Ryofu Maru III</i> |
| 2102 | 49UP20180614 | Pacific  | rf201805          | 20180614 | 20180722 | <i>Ryofu Maru III</i> |
| 2103 | 49UP20180806 | Pacific  | rf201806, P13     | 20180806 | 20180927 | <i>Ryofu Maru III</i> |
| 2104 | 64PE20071026 | Atlantic | PE278             | 20071026 | 20071117 | <i>Pelagia</i>        |
| 2105 | 740H20180228 | Atlantic | JC159             | 20180228 | 20180410 | <i>James Cook</i>     |
| 2106 | 91AA20171209 | Indian   | NCAOR, SOE2017-18 | 20171209 | 20180204 | <i>S.A. Agulhas I</i> |

815



## Figure Captions

820 **Figure 1.** Location of stations in (a) GLODAPv2.2019 and for (b) the new data added in this update.

**Figure 2.** Number of cruises per year in GLODAPv2, GLODAPv2.2019, and GLODAPv2.2020.

**Figure 3.** Example crossover figure, for TCO<sub>2</sub> for cruises 49UP20160109 (blue) and 49UP20160703 (red), as it was generated during the crossover analysis. Panels (a) and (b) show the station positions. Panel (d) shows the data below the upper depth limit (in this case 2000 dbar) as points and the interpolated profiles as lines. Non-interpolated data either did not meet minimum depth separation requirements (Table 4 in Key et al., 2010) or are the deepest sampling depth. The interpolation does not extrapolate. Panel (e) shows the mean difference profile (black, dots) with its standard deviation, and also the weighted mean offset (straight, red) and weighted standard deviation. Summary statistics are provided in (c).

825 **Figure 4.** Example summary figure, for TCO<sub>2</sub> crossovers for 49UP20160109 versus the cruises in GLODAPv2.2019 (with cruise EXPocode listed on x-axis sorted according to year the cruise was conducted). The black dots and vertical error bars show the weighted mean offset and standard deviation for each crossover. The weighted mean and standard deviation of all these offsets are shown in the red lines and are  $3.68 \pm 0.83 \mu\text{mol kg}^{-1}$ . The black dashed line is the reference line for a  $+4 \mu\text{mol kg}^{-1}$  offset (the corresponding line for  $-4 \mu\text{mol kg}^{-1}$  offset is right on top of x-axis and not visible).

830 **Figure 5.** Example summary figure for CONTENT and CANYON-B analyses for 49UP20160109. Any data from regions where CONTENT and CANYON-B were not trained are excluded (in this case, the Sea of Japan). The top row shows the nutrients and the bottom row the seawater CO<sub>2</sub> chemistry variables (Note, different abbreviations for TCO<sub>2</sub> (CT) and TALK (AT)). Black dots are the measured data, blue dots are CANYON-B estimates and red dots are the CONTENT estimates. Each variable has two figure panels. The left shows the depth profile while the right shows the absolute difference between measured and estimated values divided by the CANYON-B/CONTENT uncertainty estimate, which is determined for each estimated value. A value below 1 indicates a good match between the two as it means that the difference between measured and estimated values is less than the uncertainty of the latter. The statistics in each panel are for all data deeper than 500 dbar and N is the number of samples; considered. A gain ratio and its interquartile range is given for the nutrients. For the seawater CO<sub>2</sub> chemistry variables the numbers on each panel are the median difference between measured and predicted values for CANYON-B (upper) and CONTENT (lower). Both are given with their interquartile range.

835 **Figure 6.** Distribution of applied adjustments for each core variable that received secondary QC. Grey areas depict the initial minimum adjustment limits. The figure includes numbers for data subjected to secondary quality control only. Note also that the y-axis scale is set to render the number of adjustments to be visible, so the bar showing zero offset (the 0 bar) for each variable is cut off (see Table 5 for these numbers).

**Figure 7.** Distribution of pH offsets for the cruises from Japan Meteorological Agency added in GLODAPv2.2020.

840 **Figure 8.** Distribution of applied adjustments per decade for the 946 cruises included in GLODAPv2.2020. Dark blue: not adjusted; light blue: absolute adjustment is smaller than initial minimum adjustment limit (Table 3); orange: absolute adjustment is between limit and 2 times the limit; red: absolute adjustment is larger than 2 times the limit.

**Figure 9.** Locations of stations included in the (a) Arctic, (b) Atlantic, (c) Indian, and (d) Pacific Ocean product files for the complete GLODAPv2.2020 dataset.

845 **Figure 10.** Distribution of data in GLODAPv2.2020 in (a) December–February, (b) March–May, (c) June–August, (d) September–November, and (e) number of observations for each month north of 45° N (red), north of equator to 45° N (orange), equator to 45° S (light blue), and south of 45° S (dark blue).

850 **Figure 11.** Number (a) and density (b) of observations in 100 m depth layers. The latter was calculated by dividing the number of observations in each layer by its global volume calculated from ETOPO2 (National Geophysical Data Center, 2006). For example, in the layer between 0 and 100 m there are on average 0.0075 observations per cubic kilometer. One observation is one water sampling point and has data for several variables.

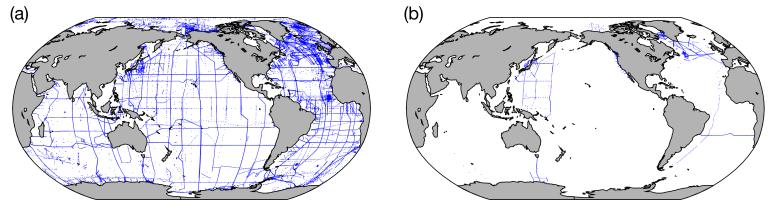



Figure 1

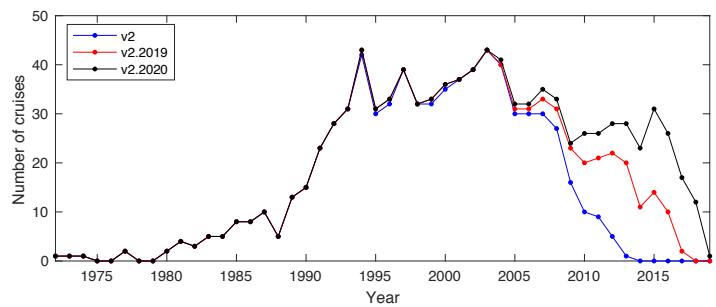



Figure 2

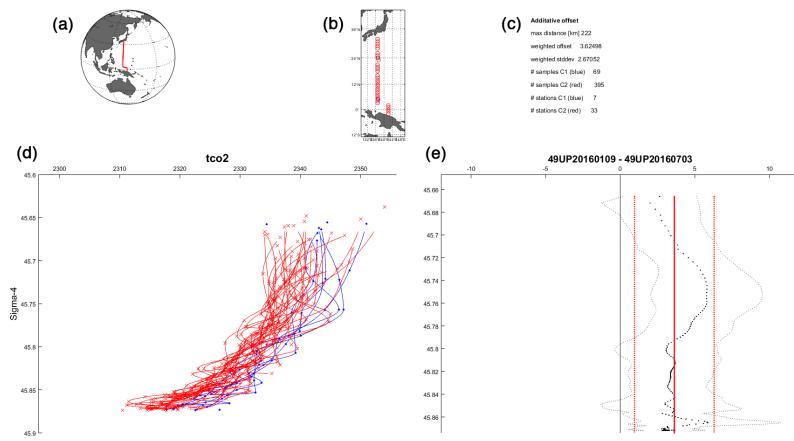



Figure 3

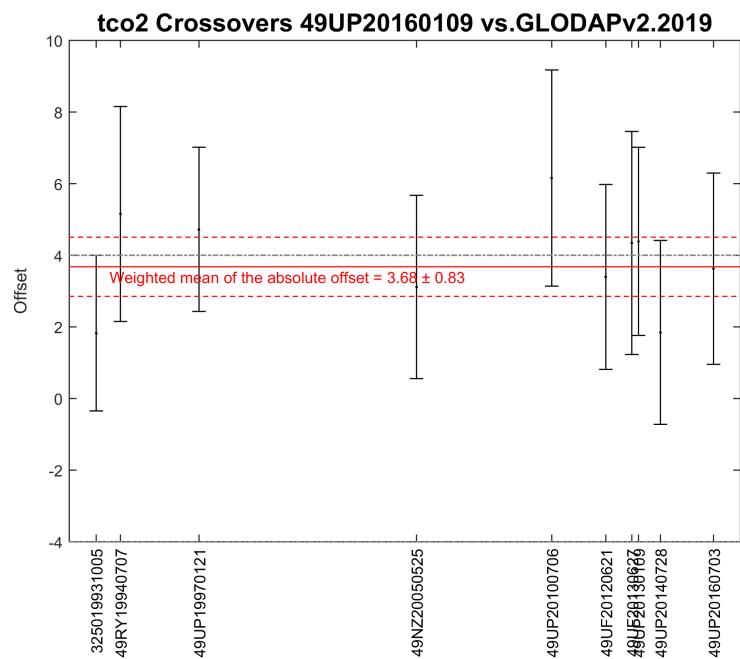



Figure 4

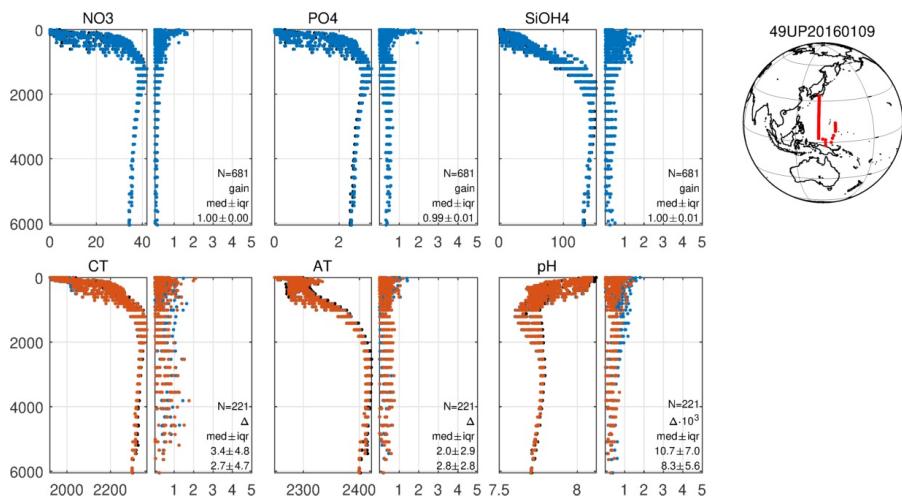



Figure 5

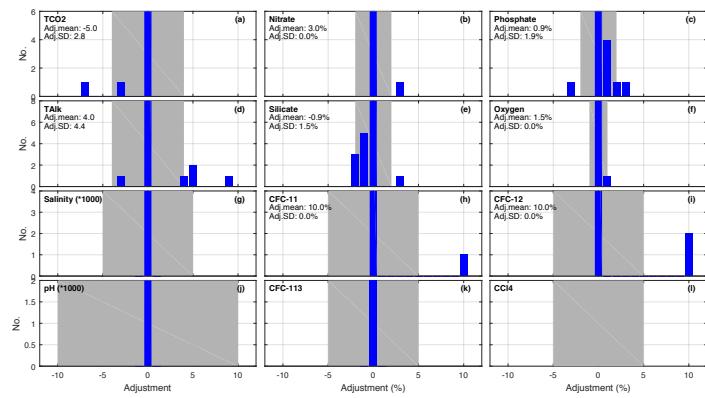



Figure 6

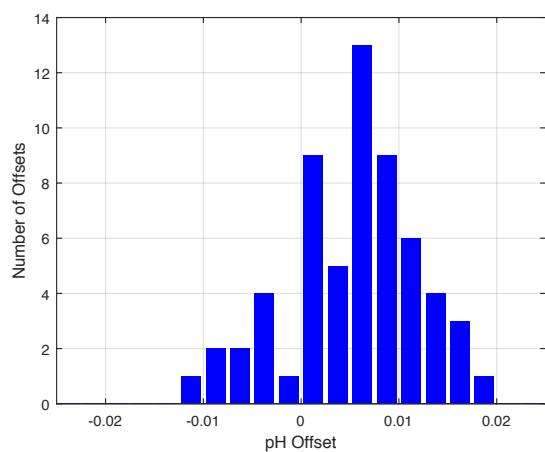



Figure 7

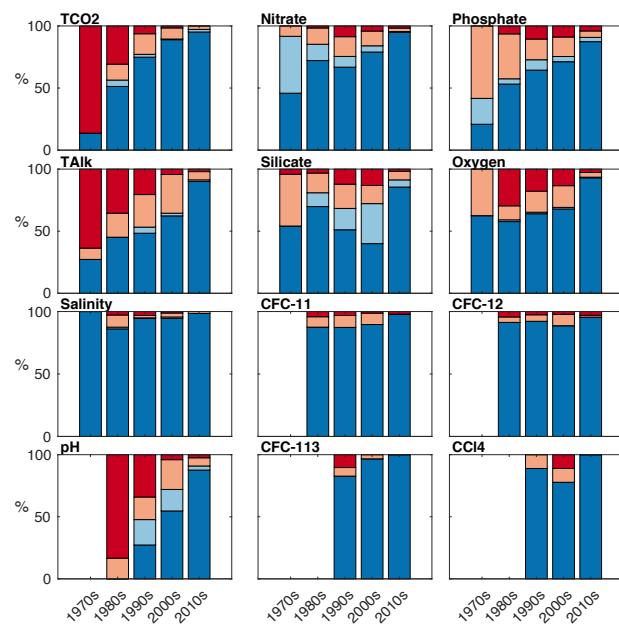



Figure 8

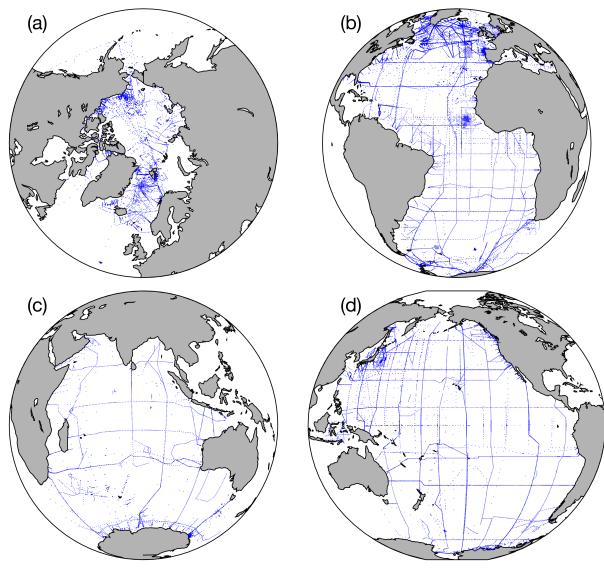



Figure 9

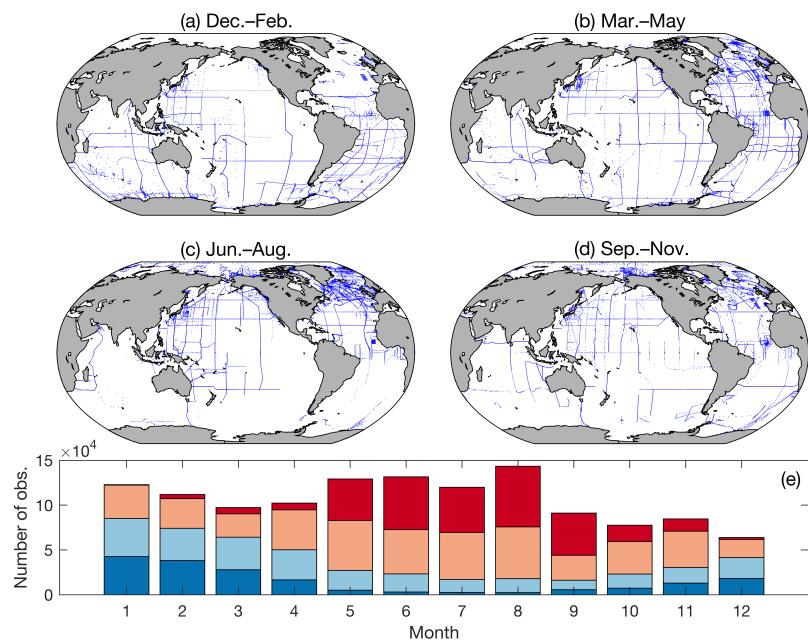



Figure 10

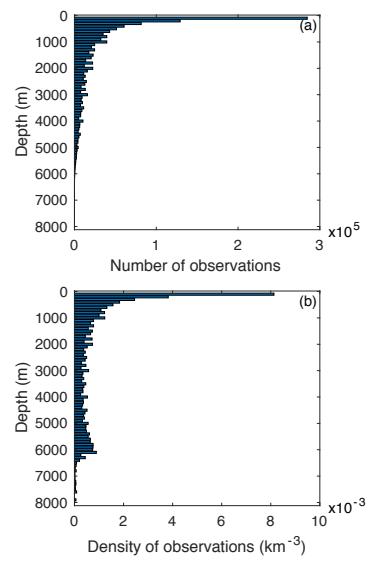



Figure 11